Electric and electrochemical studies of polyether based electrolyte for energy application
DOI:
https://doi.org/10.62638/ZasMat1244Ključne reči:
polymer electrolytes, polyether, supercapacitor, ionic conductivityApstrakt
Electrolytes are the most significant parts or element of energy storage devices. Polymer electrolytes are known for their wide range of application but, the main problem with polymer electrolytes is their low ionic conductivity. This has attracted the researchers to developed different approaches to increase the ionic conductivity of polymers. Preparation of polymer matrix using solution casting techniques was explained. This review, report the various approaches as well as the result obtained by different studies using polyether-based electrolyte which include PEO, PEO/PEG, PPO, PEDGA, PEG, PTMEG etc. by adding different quantity of various salts as a dopant. From the reviewed work, there is significant development of the ionic conductivity reported by different researchers this clearly shows a promising wide application in energy storage devices such as supercapacitor, batteries, fuel cells etc.
Reference
I. A. Kariper, S. Korkmaz, C. Karaman, O. Karaman, (2022) "High energy supercapacitors based on functionalized carbon nanotubes: Effect of atomic oxygen doping via various radiation sources," Fuel, 324, 124497,
https://doi.org/10.1016/j.fuel.2022.124497
T. Chen, L. Dai, (2013) "Carbon nanomaterials for high-performance supercapacitors," Mater. Today, 16(7-8), 272-280,
https://doi.org/10.1016/j.mattod.2013.07.002
P. Anandhi, V. Jawahar Senthil Kumar, S. Harikrishnan (2021) "Nanocomposites for Supercapacitor Application," in Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, O. V. Kharissova, L. M. Torres-Martínez, and B. I. Kharisov, Eds., Cham: Springer International Publishing, p.1639-1662.
https://doi.org/10.1007/978-3-030-36268-3_96
J. Wu (2022) "Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics," Chem. Rev., 122(12), 10821-10859,
https://doi.org/10.1021/acs.chemrev.2c00097
S. A. Hashmi, N. Yadav, M. K. Singh (2020) "Polymer Electrolytes for Supercapacitor and Challenges," in Polymer Electrolytes, 1st ed., T. Winie, A. K. Arof, and S. Thomas, Eds., Wiley, p. 231-297.
https://doi.org/10.1002/9783527805457.ch9
M. Gustavo (2010) "Dynamic Modelling and Control Design of Advanced Energy Storage for Power System Applications," in Dynamic Modelling, A. V., Ed., InTech,
S. Nazir, S. P. Pandey, F. A. Latif, P. K. Singh (2024) "Current Scenario and Future Prospective of Ionic‐Liquid Doped Polymer Electrolyte for Energy Application," Macromol. Symp., 413(1), 2300035,
https://doi.org/10.1002/masy.202300035
R. C. Agrawal, G. P. Pandey (2008) "Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview," J. Phys. Appl. Phys., 41(22), 223001,
https://doi.org/10.1088/0022-3727/41/22/223001
G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, Y. Meng (2021) "Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application," Adv. Funct. Mater., 31(9), 2007598,
https://doi.org/10.1002/adfm.202007598
D. M. Halat et al. (2021) "Modifying Li + and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion," Chem. Mater., 33(13), 4915-4926,
https://doi.org/10.1021/acs.chemmater.1c00339
S. R. Dhakate et al. (2020) "Advanced Materials for Strategic and Societal Applications," in Metrology for Inclusive Growth of India, D. K. Aswal, Ed., Singapore: Springer Singapore, p.811-879.
https://doi.org/10.1007/978-981-15-8872-3_17
S. Koltzenburg, M. Maskos, O. Nuyken (2023) Polymer Chemistry. Berlin, Heidelberg: Springer Berlin Heidelberg,
https://doi.org/10.1007/978-3-662-64929-9
F. T. Hong, V. Ladelta, R. Gautam, S. M. Sarathy, N. Hadjichristidis (2021) "Polyether-Based Block Co(ter)polymers as Multifunctional Lubricant Additives," ACS Appl. Polym. Mater., 3(8), 3811-3820,
https://doi.org/10.1021/acsapm.1c00398
P. Sharma, S. Sharma, H. Kumar (2024) "Introduction to ionic liquids, applications and micellization behaviour in presence of different additives," J. Mol. Liq., 393, 123447,
https://doi.org/10.1016/j.molliq.2023.123447
H. Chen et al. (2020) "Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO 2 /LiTFSI/PEO Composite Electrolyte for High‐Rate and High‐Voltage All‐Solid‐State Battery," Adv. Energy Mater., 10(21), 2000049,
https://doi.org/10.1002/aenm.202000049
V. St‐Onge, S. Rochon, J. Daigle, A. Soldera, J. P. Claverie (2021) "The Unusual Conductivity of Na + in PEO‐Based Statistical Copolymer Solid Electrolytes: When Less Means More," Angew. Chem., 133(49), 26101-26108,
https://doi.org/10.1002/ange.202109709
R. Bakar et al. (2022) "Effect of Polymer Topology on Microstructure, Segmental Dynamics, and Ionic Conductivity in PEO/PMMA-Based Solid Polymer Electrolytes," ACS Appl. Polym. Mater., 4(1), 179-190,
https://doi.org/10.1021/acsapm.1c01178
A. Naboulsi, R. Chometon, F. Ribot, G. Nguyen, O. Fichet, C. Laberty-Robert (2024) "Correlation between Ionic Conductivity and Mechanical Properties of Solid-like PEO-based Polymer Electrolyte," ACS Appl. Mater. Interfaces, 16(11), 13869-13881,
https://doi.org/10.1021/acsami.3c19249
H. Wang, X. Cui, C. Zhang, H. Gao, W. Du, Y. Chen (2020) "Promotion of Ionic Conductivity of PEO-Based Solid Electrolyte Using Ultrasonic Vibration," Polymers, 12(9), 1889,
https://doi.org/10.3390/polym12091889
S.Toe, F.Chauvet, L.Leveau, J.-C.Remigy, T. Tzedakis (2023) "Impact of unsolvated lithium salt concentration on the ions transport pathway in polymer electrolyte (LiTFSI-PEO): empirical mathematical model to predict the ionic conductivity," J. Appl. Electrochem., 53(10), 1939-1951,
https://doi.org/10.1007/s10800-023-01900-4
S. K. Chaurasia, M. P. Singh, M. K. Singh, P. Kumar, A. L. Saroj (2022) "Impact of ionic liquid incorporation on ionic transport and dielectric properties of PEO-lithium salt-based quasi-solid-state electrolytes: role of ion-pairing," J. Mater. Sci. Mater. Electron., 33(3), 1641-1656,
https://doi.org/10.1007/s10854-022-07706-y
P. Dhatarwal, R. J. Sengwa (2020) "Synergistic effects of salt concentration and polymer blend composition on the crystal phases, dielectric relaxation, and ion conduction in PVDF/PEO/LiCF3SO3 solid polymer electrolytes," Ionics, 26(5), 2259-2275,
https://doi.org/10.1007/s11581-019-03337-2
Y. Zhang, W. Feng, Y. Zhen, P. Zhao, X. Wang, L. Li (2022) "Effects of lithium salts on PEO-based solid polymer electrolytes and their all-solid-state lithium-ion batteries," Ionics, 28(6), 2751-2758,
https://doi.org/10.1007/s11581-022-04525-3
K. P. Sindhu, S. S. M. Abdul Majeed, J. Shahitha Parveen (2021) "PEO/PMMA Solid Nanocomposite Polyelectrolyte with Enhanced Ionic Conductivity and Promising Dielectric Properties," J. Electron. Mater., 50(12), 6654-6666,
https://doi.org/10.1007/s11664-021-09205-y
R. J. Sengwa, P. Dhatarwal (2020) "Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes," Electrochimica Acta, 338, 135890,
https://doi.org/10.1016/j.electacta.2020.135890
L. Liu et al. (2024) "Stable Cycling of All‐Solid‐State Lithium Metal Batteries Enabled by Salt Engineering of PEO‐Based Polymer Electrolytes," ENERGY Environ. Mater., 7(2), 12580,
https://doi.org/10.1002/eem2.12580
S. Liu et al. (2023) "Enhanced ionic conductivity of PEO-based solid electrolyte through synergistic dissociation effect," Mater. Lett., 351, 134981,
https://doi.org/10.1016/j.matlet.2023.134981
C. Revathy, V. R. Sunitha, B. K. Money, R. Joseph, S. Radhakrishnan (2023) "Role of mixed molecular weight PEO-PVDF polymers in improving the ionic conductivity of blended solid polymer electrolytes," Ionics, 29(10), 4025-4035,
https://doi.org/10.1007/s11581-023-05141-5
A. R. Polu et al. (2023) "Conductivity enhancement in K+-ion conducting solid polymer electrolyte [PEG : KNO3] and its application as an electrochemical cell," Korean J. Chem. Eng., 40(12), 2975-2981,
https://doi.org/10.1007/s11814-023-1544-6
K. H. Khan, M. H. Bilal, J. Kressler, H. Hussain (2023) "PEO/PEG-b-P(MA-POSS)/LiClO4 blend solid polymer electrolyte for enhanced lithium-ion conductivity: fabrication, characterization, and electrochemical impedance spectroscopy," J. Mater. Sci., 58(46), 17557-17577,
https://doi.org/10.1007/s10853-023-09109-8
Y.Shin, A.Le Mong, C.Ng.Thi Linh (2024) Tough and single lithium-ion conductive nanocomposite electrolytes based on PAES- g -PEG and POSS-PEG for lithium-sulfur batteries," J. Mater. Chem. A, p.10.1039.D4TA01569J,
https://doi.org/10.1039/D4TA01569J
S. Narute, J. M. Angel, T. Kyu (2023) "Highly conductive, stretchable block copolymer based elastomeric networks for lithium ion batteries," Electrochimica Acta, 443, 141962,
https://doi.org/10.1016/j.electacta.2023.141962
H. Lu, S. Zheng, L. Wei, X. Zhang, X. Guo (2023) "Manipulating Zn 2+ solvation environment in poly(propylene glycol)‐based aqueous Li + /Zn 2+ electrolytes for high‐voltage hybrid ion batteries," Carbon Energy, 5(12), 365,
https://doi.org/10.1002/cey2.365
J. Chen et al. (2022) "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nat. Commun., 13(1), 4868,
https://doi.org/10.1038/s41467-022-32517-4
F. S. Genier, I. D. Hosein (2021) "Effect of Coordination Behavior in Polymer Electrolytes for Sodium-Ion Conduction: A Molecular Dynamics Study of Poly(ethylene oxide) and Poly(tetrahydrofuran)," Macromolecules, 54(18), 8553-8562,
https://doi.org/10.1021/acs.macromol.1c01028
J. Wang, F. S. Genier, H. Li, S. Biria, I. D. Hosein (2019) "A Solid Polymer Electrolyte from Cross-Linked Polytetrahydrofuran for Calcium Ion Conduction," ACS Appl. Polym. Mater., 1(7), 1837-1844,
https://doi.org/10.1021/acsapm.9b00371
F. S. Genier, J. Barna, J. Wang, S. Biria, I. D. Hosein (2020) "A Solid Polymer Electrolyte from Photo-Crosslinked Polytetrahydrofuran and a Cycloaliphatic Epoxide for Lithium-Ion Conduction," MRS Adv., 5(48-49), 2467-2476,
https://doi.org/10.1557/adv.2020.274
X. Zhang et al. (2022) "Li6.4La3Zr1.4Ta0.6O12 Reinforced Polystyrene-Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide)-Polystyrene pentablock copolymer-based composite solid electrolytes for solid-state lithium metal batteries," J. Power Sources, 542, 231797,
https://doi.org/10.1016/j.jpowsour.2022.231797
H. Xu et al. (2021) "Cross-Linked Polypropylene Oxide Solid Electrolyte Film with Enhanced Mechanical, Thermal, and Electrochemical Properties via Additive Modification," ACS Appl. Polym. Mater., 3(12), 6539-6547,
https://doi.org/10.1021/acsapm.1c01248
M. Liu et al. (2020) "A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries," Electrochimica Acta, 354, 136622,
https://doi.org/10.1016/j.electacta.2020.136622
S. Biria et al. (2021) "Gel Polymer Electrolytes Based on Cross-Linked Poly(ethylene glycol) Diacrylate for Calcium-Ion Conduction," ACS Omega, 6(26), 17095-17102,
https://doi.org/10.1021/acsomega.1c02312
C.-H. Chang, Y.-L. Liu (2022) "Gel Polymer Electrolytes Based on an Interconnected Porous Matrix Functionalized with Poly(ethylene glycol) Brushes Showing High Lithium Transference Numbers for High Charging-Rate Lithium Ion Batteries," ACS Sustain. Chem. Eng., 10(15), 4904-4912,
https://doi.org/10.1021/acssuschemeng.1c08065
S. Xu et al. (2020) "Homogeneous and Fast Ion Conduction of PEO‐Based Solid‐State Electrolyte at Low Temperature," Adv. Funct. Mater., 30(51), 2007172,
https://doi.org/10.1002/adfm.202007172
H. T.Ahmed, O.Gh. Abdullah (2020) "Structural and ionic conductivity characterization of PEO:MC-NH4I proton-conducting polymer blend electrolytes based films," Results Phys., 16, 102861,
https://doi.org/10.1016/j.rinp.2019.102861
M. A. Khan, Z. Hussain, U. Liaqat, M. A. Liaqat, M. Zahoor (2020) "Preparation of PBS/PLLA/HAP Composites by the Solution Casting Method: Mechanical Properties and Biocompatibility," Nanomaterials, 10(9), 1778,