A concise review on nanomaterials: plant-based synthesis, optimization, and characterization
DOI:
https://doi.org/10.62638/ZasMat1111Ključne reči:
Synthesis, Secondary metabolite, Optimization, Nanoparticles, PurificationApstrakt
Numerous studies have revealed that secondary metabolites in plants possess electrochemical properties that play a significant role in reducing metallic ions to their corresponding metallic nanoparticles. Following the reduction process, these metabolites surround the fabricated nanoparticles, thereby lowering their surface energy and enhancing their repulsive forces, which opens new possibilities for achieving promising operational stability in colloidal systems. It is essential to note that optimizing reaction parameters such as pH, concentration, temperature, and reaction time is crucial when adopting a green approach to nanoparticle synthesis using plant-based secondary metabolites as reducing, capping, and stabilizing agents. This review discusses the role of secondary metabolites and the optimization of reaction parameters as fundamental, environmentally sustainable requirements for nanoparticle synthesis. Additionally, it examines the processes involved in the fabrication, purification, and characterization of nanoparticles.
Reference
D. Shivapooja, R. Suresh, A.I. Almansoor (2022) Biofunctionalized Silver nanoparticles synthesized from Passiflora vitifolia leaf extract and evaluation of its antimicrobial, antioxidant and anticancer activities. Biochemical Engineering Journal, 187, 108517, https://doi.org/10.1016/j.bej.2022.108517
L. Pokrajac, A. Abbas, W. Chrzanowski, G.M. Dias, B.J. Eggleton, S. Maguire, E. Maine, T. Malloy, J. Nathwani, L. Nazar, A. Sips, J. Sone, A. Van Den Berg, P.S Weiss, S. Mitra (2021) Nanotechnology for a Sustainable Future. Addressing Global Challenges with the International Network for Sustainable Nanotechnology. ACS Nano, 15, 18608–18623, https://doi.org/10.1021/acsnano.1c10919
R.H. Ahmed, D.E. Mustafa (2020) Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters, 10, 1–14, https://doi.org/10.1007/s40089-019-00291-9
N. Abid, A.M. Khan, S. Shujait, K. Chaudhary, M. Ikram, M. Imran, J. Haider, M. Khan, Q. Khan, M. Maqbool (2022) Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Advances in Colloid and Interface Science, 300, 102597, https://doi.org/10.1016/j.cis.2021.102597
[A.Y. Yassin (2023) Synthesized polymeric nanocomposites with enhanced optical and electrical properties based on gold nanoparticles for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 34, 1–18, https://doi.org/10.1007/s10854-022-09402-3
E.Y. Ahn, H. Jin, Y. Park (2019) Assessing the antioxidant, cytotoxic, apoptotic, and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science and Engineering C, 101, 204–216, https://doi.org/10.1016/j.msec.2019.03.095
T.M Joseph, D. Kar Mahapatra, A. Esmaeili, L. Piszczyk, M.S. Hasanin, M. Kattali, J. Haponiuk, S. Thomas (2023) Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials, 13, 574, https://doi.org/10.3390/nano13030574
K.K. Bharadwaj, B. Rabha, S. Pati, T. Sarkar, B.K. Choudhury, A. Barman, D. Bhattacharjya, A. Srivastava, D. Baishya, H.A. Edinur, Z.A. Kari, N.H.M Noor (2021) Green synthesis of gold nanoparticles using plant extracts as a beneficial prospect for cancer theranostics. Molecules, 26, 638, https://doi.org/10.3390/molecules26216389
T.C. Mokhena, M.J. John, M.A. Sibeko, V.C. Agbakoba, M.J. Mochane, A. Mtibe, T.H. Mokhothu, T.S. Motsoeneng, M.M. Phiri, M.J. Phiri, P.S. Hlangothi, T.G. Mofokeng (2020) Nanomaterials: Types, Synthesis and Characterization. Nanomaterials in biofuel research, 115–141, https://doi.org/10.1007/978-981-13-9333-4_5
S.H. Gebre (2023) Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. International Journal of Cluster Science, 34, 665–704, https://doi.org/10.1007/s10876-022-02276-9
S. Ying, Z. Guan, P.C. Ofoegbu, P. Clubb, C. Rico, F. He, J. Hong (2022) Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology and Innovation, 26, 102336, https://doi.org/10.1016/j.eti.2022.102336
S.F. Ahmed, M. Mofijur, N. Rafa, A.T. Chowdhury, S. Chowdhury, M. Nahrin, A.B.M.S. Islam, H.C. Ong (2022) Green approaches in synthesizing nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204, 111967, https://doi.org/10.1016/j.envres.2021.111967
[M. Guilger-Casagrande, T. Germano-Costa, N. Bilesky-José, T. Pasquoto-Stigliani, L. Carvalho, L.F Fraceto, R. de Lima (2021) Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. Journal of Nanobiotechnology, 19, 1–18, https://doi.org/10.1186/s12951-021-00797-5
M. Gomathi, A. Prakasam, P.V. Rajkumar, S. Rajeshkumar, R. Chandrasekaran, P.M. Anbarasan (2020) Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. South African Journal of Chemical Engineering, 32, 1–4, https://doi.org/10.1016/j.sajce.2019.11.005
[M.R. Bindhu, M. Umadevi, G.A. Esmail, N.A. Al-Dhabi, M.V. Arasu (2020) Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. Journal of Photochemistry and Photobiology B: Biology, 205, 111836, https://doi.org/10.1016/j.jphotobiol.2020.111836
P. Jain, A. Mamman (2023) Polyphenols and other phytochemicals from medicinal plants as eco-benign sources of therapeutics. International Journal of Environment and Waste Management, 1, 1–24, https://doi.org/10.1504/ijewm.2023.10062287
H. Singh, M.F. Desimone, S. Pandya, S. Jasani, N. George, M. Adnan, A. Aldarhami, A.S. Bazaid, S.A. Alderhami (2023) Revisiting the Green Synthesis of Nanoparticles: Uncovering Influences of Plant Extracts as Reducing Agents for Enhanced Synthesis Efficiency and Its Biomedical Applications. International Journal of Nanomedicine, 18, 4727–4750, https://doi.org/10.2147/IJN.S419369
L.C.S Cunha, S.A.L de Morais, F.J.T de Aquino, R. Chang, A. de Oliveira, M.M. Martins, C.H.G. Martins, L.C.F. Sousa, T.T. Barros, C.V. de Silva, E.A. do Nascimento (2017) Bioassay-guided fractionation and antimicrobial and cytotoxic activities of cassia bakeriana extracts. Revista Brasileira de Farmacognosia, 27, 91–98, https://doi.org/10.1016/j.bjp.2016.08.002
K. Muthu, S. Priya (2017) Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 66–72, https://doi.org/10.1016/j.saa.2017.02.024
L.F. Nothias, M. Nothias-Esposito, R. Da Silva, M. Wang, I. Protsyuk, Z. Zhang, A. Sarvepalli, P. Leyssen, D. Touboul, J. Costa, J. Paolini, T. Alexandrov, M. Litaudon, P.C. Dorrestein (2018) Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. Journal of Natural Products, 81, 758–767, https://doi.org/10.1021/acs.jnatprod.7b00737
M. S. Majoumouo, N.R.S. Sibuyi, M.B. Tincho, M. Mbekou, F.F. Boyom, M. Meyer (2022) Biosynthesis of Silver Nanoparticles Using Bersama engleriana Fruits Extracts and Their Potential Inhibitory Effect on Resistant Bacteria. Crystals, 12, 1010, https://doi.org/10.3390/cryst12071010
M. S. Majoumouo, N.R.S. Sibuyi, M.B. Tincho, M. Mbekou, F.F. Boyom, M. Meyer (2019). Enhanced anti-bacterial activity of biogenic silver nanoparticles synthesized from Terminalia mantaly extracts. International Journal of Nanomedicine, 14, 9031–9046, https://doi.org/10.2147/IJN.S223447
S.Yaermaimaiti, T. Wu, H.A. Aisa (2021) Bioassay-guided isolation of antioxidant, antimicrobial, and antiviral constituents of Cordia dichotoma fruits. Industrial Crops and Products, 172, 113977, https://doi.org/10.1016/j.indcrop.2021.113977
B. Bold, E. Urnukhsaikhan (2022). Biosynthesis of silver nanoparticles with antibacterial, antioxidant, and anti-inflammatory properties and their burn wound healing efficacy. Frontiers in Chemistry, 10, 1–13, https://doi.org/10.3389/fchem.2022.972534
T.S. Bhuvaneswari, T. Thirugnanam, V. Thirumurugan (2019) Phytomediated synthesis of silver nanoparticles using Cassia auriculata L: Evaluation of antibacterial and antifungal activity. Asian Journal of Pharmacy and Pharmacology, 5, 326–331, https://doi.org/10.31024/ajpp.2019.5.2.16
K. Rao, S. Aziz, T. Roome, A. Razzak, B. Sikandar, K.S Jamali, M. Imran, T. Jabri, M.R Shah (2018) Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant-induced arthritic rats. Artificial Cells, Nanomedicine and Biotechnology, 46, 597–607, https://doi.org/10.1080/21691401.2018.1431653
[27]. P. Roy, B. Das, A. Mohanty, S. Mohapatra (2017) Green synthesis of silver nanoparticles using azadirachta indica leaf extract and its antimicrobial study. Applied Nanoscience, 7, 843–850, https://doi.org/10.1007/s13204-017-0621-8
A. M. Elbagory, C. N. Cupido, M. Meyer, A. A. Hussein (2016) Large-scale screening of southern African plant extracts for the green synthesis of gold nanoparticles using microtitre-plate method. Molecules, 21, 1498 – 1517, https://doi.org/10.3390/molecules21111498
H. Zulfiqar, A. Zafar, M.N. Rasheed, Z. Ali, K. Mehmood, A. Mazher, M. Hasan, N. Mahmood (2019) Synthesis of silver nanoparticles using: Fagonia cretica and their antimicrobial activities. Nanoscale Advances, 1, 1707–1713, https://doi.org/10.1039/c8na00343b
M. Asimuddin, M.R. Shaik, S.F. Adil, M.R.H. Siddiqui, A. Alwarthan, K. Jamil, M. Khan (2020) Azadirachta indica based biosynthesis of silver nanoparticles and evaluation of their antibacterial and cytotoxic effects. Journal of King Saud University - Science, 32, 648–656, https://doi.org/10.1016/j.jksus.2018.09.014
N. S. Alharbi, N. S. Alsubhi, A. I. Felimban (2022). Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15, 109–124, https://doi.org/10.1016/j.jrras.2022.06.012
E. Manikandan, V. Krishnan (2016) Green Synthesis of Silver Nanoparticles Using Pipernigrum Concoction and its Anticancer Activity against MCF-7 and Hep-2 Cell Lines. Journal of Antimicrobial Agents, 2, 8–12, https://doi.org/10.4172/2472-1212.1000123
L. Alafandi, R. Rahman, S. Engliman, M. S. Mastuli (2022). Green Synthesis of Silver Nanoparticles Using Coffee Extract for Catalysis. Malaysian NANO-An International Journal, 1, 13–25, https://doi.org/10.22452/mnij.vol1no2.2
X. Baskaran, A.V.G Vigila, T. Parimelazhagan, D. Muralidhara-Rao, S. Zhang (2016) Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible silver nanoparticles from an early tracheophyte, Pteris tripartita Sw. International Journal of Nanomedicine, 11, 5789–5805, https://doi.org/10.2147/IJN.S108208
M. Pirsaheb, T. Gholami, H. Seifi, E.A. Dawi, E.A Said, A.H.M Hamoody, U.S Altimari, M. Salavati-Niasari (2024) Green synthesis of nanomaterials by using plant extracts as reducing and capping agents. Environmental Science and Pollution Research, 31, 24768–24787, https://doi.org/10.1007/s11356-024-32983-x
R. Sithara, P. Selvakumar, C. Arun, S. Anandan, P. Sivashanmugam (2017) Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn(II) ions. Journal of Advanced Research, 8, 561–568, https://doi.org/10.1016/j.jare.2017.07.001
M. Hamelian, K. Varmira, B. Karmakar, H. Veisi (2023). Catalytic Reduction of 4-Nitrophenol Using Green Synthesized Silver and Gold Nanoparticles over Thyme Plant Extract. Catalysis Letters, 153, 2341–2351, https://doi.org/10.1007/s10562-022-04164-3
N. Shahabadi, S. Zendehcheshm, F. Khademi (2022). Green Synthesis, in vitro Cytotoxicity, Antioxidant Activity and Interaction Studies of CuO Nanoparticles with DNA, Serum Albumin, Hemoglobin and Lysozyme. ChemistrySelect, 7, https://doi.org/10.1002/slct.202202916
K. Singh, J. Singh, M. Rawat (2019) Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Applied Sciences, 1, 1–8, https://doi.org/10.1007/s42452-019-0610-5
N. Mahmud, M.S. Nasser, M.H. El-Naas, M.M. Ba-Abbad, A. Wahab Mohammad, S. Mansour, A. Benamor (2020) Synthesis and Characterization of Fe3O4 Nanoparticles Using Different Experimental Methods. IOP Conference Series: Materials Science and Engineering, 778, https://doi.org/10.1088/1757-899X/778/1/012028
N. Liaqat, N. Jahan, Khalil-ur-Rahman, T. Anwar, H. Qureshi (2022) Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Frontiers in Chemistry, 10, 1–13, https://doi.org/10.3389/fchem.2022.952006
V. Jose, L. Raphel, K. S. Aiswariya, P. Mathew (2021). Green synthesis of silver nanoparticles using Annona squamosa L. seed extract: characterization, photocatalytic and biological activity assay. Bioprocess and Biosystems Engineering, 44(9), 1819–1829, https://doi.org/10.1007/s00449-021-02562-2
A. R. Binupriya, M. Sathishkumar, K. Vijayaraghavan, S. I. Yun (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. Viridis. Journal of Hazardous Materials, 177, 539–545, https://doi.org/10.1016/j.jhazmat.2009.12.066
J. A. Fuentes-García, J. Santoyo-Salzar, E. Rangel-Cortes, G. F. Goya, V. Cardozo-Mata, J. A. Pescador-Rojas (2021) Effect of ultrasonic irradiation power on sonochemical synthesis of gold nanoparticles. Ultrasonics Sonochemistry, 70, 105274, https://doi.org/10.1016/j.ultsonch.2020.105274
B. Calderón-Jiménez, A. R. Montoro Bustos, R. Pereira Reyes, S. A. Paniagua, J. R. Vega-Baudrit (2022) Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media. Scientific Reports, 12, 1–17, https://doi.org/10.1038/s41598-022-04921-9
H. B. A. Sousa, A. V Prior (2021) From Impure to Purified Silver Nanoparticles : Advances and Timeline in Separation Methods. Nanomaterials, 11, 3407, https://doi.org/10.3390/nano11123407
M. Mani, S. Pavithra, K. Mohanraj, S. Kumaresan, S.S. Alotaibi, M.M. Eraqi, A. Gandhi, R. Babujanarthanam, M. Maaza, K. Kaviyarasu (2021) Studies on the spectrometric analysis of metallic silver nanoparticles (Ag NPs) using Basella alba leaf for the antibacterial activities. Environmental Research, 199, 111274, https://doi.org/10.1016/j.envres.2021.111274
S. Vijayaram, H. Razafindralambo, Y.Z. Sun, S. Vasantharaj, H. Ghafarifarsani, S.H. Hoseinifar, M. Raeeszadeh (2024) Applications of Green Synthesized Metal Nanoparticles: A Review. Biological Trace Element Research, 202, 360–386, https://doi.org/10.1007/s12011-023-03645-9
K. Khurana, N. Jaggi (2021) Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: A Review. Plasmonics, 16, 981–999, https://doi.org/10.1007/s11468-021-01381-1
R. Borah, S. W. Verbruggen Borah (2022) Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, https://doi.org/10.1016/j.colsurfa.2022.128521
A. K. Shakya, S. Singh Shakya (2024) Performance Analysis of a Developed Optical Sensing Setup Based on the Beer-Lambert Law. Plasmonics, 19, 447–455, https://doi.org/10.1007/s11468-023-01979-7
A. K. Shakya, S. Singh (2022) Design of biochemical biosensor based on transmission, absorbance and refractive index. Biosensors and Bioelectronics: X, 10, 100089, https://doi.org/10.1016/j.biosx.2021.100089
P. Jagadeesh, S.M. Rangappa, S. Siengchin (2024) Advanced characterization techniques for nanostructured materials in biomedical applications. Advanced Industrial and Engineering Polymer Research, 7, 122–143, https://doi.org/10.1016/j.aiepr.2023.03.002
N. H. Solangi, R. R. Karri, N. M. Mubarak, S. A. Mazari (2024) Mechanism of polymer composite-based nanomaterial for biomedical applications. Advanced Industrial and Engineering Polymer Research, 7, 1–19, https://doi.org/10.1016/j.aiepr.2023.09.002
R. Sharma (2005) An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. Journal of Materials Research, 20, 1695–1707, https://doi.org/10.1557/JMR.2005.0241
L. E. Franken, E. J. Boekema, M. C. A. Stuart (2017) Transmission Electron Microscopy as a Tool for the Characterization of Soft Materials: Application and Interpretation. Advanced Science, 4, 1–9, https://doi.org/10.1002/advs.201600476
C. Sun, S. Lux, E. Müller, M. Meffert, D. Gerthsen (2020) Versatile application of a modern scanning electron microscope for materials characterization. Journal of Materials Science, 55, 13824–13835, https://doi.org/10.1007/s10853-020-04970-3
D. Nayak, S. Ashe, P. R. Rauta, M. Kumari, B. Nayak (2016) Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Materials Science and Engineering C, 58, 44–52, https://doi.org/10.1016/j.msec.2015.08.022.