Corrosion Control in Metals: A Review on Sustainable Approach Using Nanotechnology
DOI:
https://doi.org/10.62638/ZasMat1187Keywords:
Corrosion prevention, nanocoatings, Corrosion resistance, Environmental conditions, Long-term stability, Nanoparticle dispersionAbstract
This study concerns the review of previous studies that made use of nanotechnology to inhibit the corrosion of metals/alloys in one part. The other consideration probed the long-term stability and durability of the applied nanotechnology for corrosion control in a variety of environmental conditions, as well as the optimization of nanoparticle dispersion and integration for optimal efficiency—two crucial but sometimes disregarded features of nano coatings for corrosion prevention. Although there had been some progress in preventing corrosion, consistent dispersion of nanoparticles and long-term efficacy were still unattainable with nano coatings. Key findings from the review of the literature covering the years 2017–2023 indicated an increasing amount of research on different materials and techniques to improve corrosion resistance, from multilayered nanocomposites to superhydrophobic surfaces and innovative composite coatings. The versatility and effectiveness of nanoparticle-based coatings in corrosion management were highlighted by this research, which provided specialized solutions for various substrates and operating environments. Furthermore, studies on the stability and durability of nanocoatings on metals have shown that there are viable ways to extend their useful life over time, such as the use of coatings that are nanolaminated and the active release of corrosion inhibitors. In addition to closing important information gaps, this review offered guidance for the future production of reliable and durable corrosion protection devices.
References
Bradford SA. Corrosion. In: Meyers RA, editor. Encyclopedia of Physical Science and Technology (Third Edition), New York: Academic Press; 2003, p. 761–78. https://doi.org/10.1016/B0-12-227410-5/00148-4.
Inya NA, Etim DN, Uchenna AJ, Chukwudi AP. Recent findings on corrosion of ferritic stainless steel weldments: A review. Materials Protection 2023;64:372–82.
Ndukwe AI, Anaele JU. CORROSION OF DUPLEX STAINLESS-STEEL WELDMENTS: A REVIEW OF RECENT DEVELOPMENTS KOROZIJA DUPLEKS NERDJAJUĆIH ČELIKA: PREGLED SKORIH ISTRAŽIVANJA n.d.
Ndukwe AI, Okolo CD, Nwadirichi BU. Overview of corrosion behaviour of ceramic materials in molten salt environments. Zas Mat 2024;65:202–12. https://doi.org/10.62638/ZasMat1128.
What is Corrosion and Its Effect on Production? The Importance of Corrosion Prevention & How Polyurethane Can Help - TPC n.d. https://goturethane.com/the-importance-of-corrosion-prevention-how-polyurethane-can-help/ (accessed October 13, 2023).
Momoh A, Adams FV, Samuel O, Bolade OP, Olubambi PA. Corrosion Prevention: The Use of Nanomaterials. In: Ama OM, Sinha Ray S, Ogbemudia Osifo P, editors. Modified Nanomaterials for Environmental Applications: Electrochemical Synthesis, Characterization, and Properties, Cham: Springer International Publishing; 2022, p. 91–105. https://doi.org/10.1007/978-3-030-85555-0_5.
NDUKWE AI. NOVEL COMPOSITES FOR MANUFACTURING HIGH-STRENGTH AND LIGHTWEIGHT MATERIALS: A REVIEW. Academic Journal of Manufacturing Engineering 2023;21.
Ndukwe AI, Umoh S, Ugwochi C, Ogbuji C, Ngolube C, Aliegu F, et al. Prediction of compression strength of bamboo reinforced low-density polyethylene waste (LDPEw) composites. Composites Theory and Practice 2022;R. 22, nr 3.
Ndukwe AI. Recent findings on mechanical behaviour of stir cast aluminium alloy-matrix composites: An overview. Acta Periodica Technologica 2023:223–35.
Shahbaz M, Naeem H, Murtaza S, Ul-Huda N, Tayyab M, Hamza A, et al. Chapter 6 - Application of starch as an active ingredient for the fabrication of nanocomposite in food packaging. In: Nayik GA, Hussain Dar A, editors. Starch Based Nanomaterials for Food Packaging, Academic Press; 2024, p. 161–208. https://doi.org/10.1016/B978-0-443-18967-8.00004-9.
Ndukwe AI, Anyakwo CN. Corrosion inhibition model for mild steel in sulphuric acid by crushed leaves of clerodendrum splendens (verbenaceae). International Journal of Scientific Engineering and Applied Science 2017;3:39–49.
Ndukwe AI. Corrosion inhibition of carbon steel by eucalyptus leaves in acidic media: An overview. Zastita Materijala 2024;65:11–21.
NDUKWE AI. GREEN INHIBITORS FOR CORROSION OF METALS IN ACIDIC MEDIA: A REVIEW. Academic Journal of Manufacturing Engineering 2022;20.
Anyakwo CN, Ndukwe AI. Mathematical model for corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of tridax procumbens (asteraceae). International Journal of Science and Engineering Investigations 2017;6:81–9.
Ndukwe AI, Anyakwo CN. Modelling of corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of Sida acuta (Malvaceae). Int J Eng Sci 2017;6:22–33.
Ndukwe AI, Anyakwo CN. Modelling of corrosion inhibition of mild steel in sulphuric acid by thoroughly crushed leaves of voacanga Africana (apocynaceae). AJER 2017;6:344–56.
Ndukwe AI, Anyakwo CN. Predictive Corrosion-Inhibition Model for Mild Steel in Sulphuric Acid (H 2 SO 4) by Leaf-Pastes of Sida Acuta Plant. Journal of Civil, Construction and Environmental Engineering 2017;2:123–33.
Ndukwe AI, Anyakwo CN. Predictive model for corrosion inhibition of mild steel in HCl by crushed leaves of clerodendrum splendens. IRJET 2017;4:679–88.
Anyakwo CN, Ndukwe AI. Prognostic model for corrosion-inhibition of mild steel in hydrochloric acid by crushed leaves of voacanga Africana. International Journal of Computational and Theoretical Chemistry 2017;2:31–42.
Ferdous AR, Shah SNA, Shah SS, Aziz MdA. Advancements in nanotechnology applications: Transforming catalysts, sensors, and coatings in petrochemical industries. Fuel 2024;371:132020. https://doi.org/10.1016/j.fuel.2024.132020.
Zhu H, Li J. Advancements in corrosion protection for aerospace aluminum alloys through surface treatment. International Journal of Electrochemical Science 2024;19:100487. https://doi.org/10.1016/j.ijoes.2024.100487.
Wani KA, Manzoor J, Indrabi SJ, Yousuf T. Nanotechnology: Boon or Bane for the Environment? In: Lone R, Malik JA, editors. Advances in Environmental Engineering and Green Technologies, IGI Global; 2023, p. 1–14. https://doi.org/10.4018/978-1-6684-5533-3.ch001.
Medupin RO, Abubakre OK, Abdulkareem AS, Muriana RA, Kariim I, Bada SO. Thermal and physico-mechanical stability of recycled high density polyethylene reinforced with oil palm fibres. Engineering Science and Technology, an International Journal 2017;20:1623–31. https://doi.org/10.1016/j.jestch.2017.12.005.
Abraham J, Shetty M, Suresh A, Jeevanantham AK, Jeeva PA, Oyyaravelu R, et al. Anticorrosive Property of Aluminum Chloride Nanoparticles on Microbial-Induced Corrosion on Aluminum Workpiece. J of Materi Eng and Perform 2023. https://doi.org/10.1007/s11665-023-07814-8.
Medupin RO, Ukoba KO, Yoro KO, Jen T-C. Sustainable approach for corrosion control in mild steel using plant-based inhibitors: a review. Materials Today Sustainability 2023;22:100373. https://doi.org/10.1016/j.mtsust.2023.100373.
Kartsonakis IA, Dragatogiannis DA, Koumoulos EP, Karantonis A, Charitidis CA. Corrosion behaviour of dissimilar friction stir welded aluminium alloys reinforced with nanoadditives. Materials & Design 2016;102:56–67. https://doi.org/10.1016/j.matdes.2016.04.027.
Rout TK, Gaikwad AV. In-situ generation and application of nanocomposites on steel surface for anti-corrosion coating. Progress in Organic Coatings 2015;79:98–105. https://doi.org/10.1016/j.porgcoat.2014.11.006.
Wlasny I, Dabrowski P, Rogala M, Pasternak I, Strupinski W, Baranowski JM, et al. Impact of electrolyte intercalation on the corrosion of graphene-coated copper. Corrosion Science 2015;92:69–75. https://doi.org/10.1016/j.corsci.2014.11.027.
Stoot AC, Camilli L, Spiegelhauer S-A, Yu F, Bøggild P. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell. Journal of Power Sources 2015;293:846–51. https://doi.org/10.1016/j.jpowsour.2015.06.009.
Moore JJ, Boyce EA, editors. Chemical metallurgy. 2nd ed. London ; Boston: Butterworths; 1990.
Pengpeng L, Xue F, Xin L, Li X, Fan Y, Zhao J, et al. Anticorrosion Coating with Heterogeneous Assembly of Nanofillers Modulated by a Magnetic Field. ACS Appl Mater Interfaces 2023;15:7538–51. https://doi.org/10.1021/acsami.2c19132.
Njoku DI, Cui M, Xiao H, Shang B, Li Y. Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques. Sci Rep 2017;7:15597. https://doi.org/10.1038/s41598-017-15845-0.
Verma C, Hussain CM, Ebenso E, editors. Anticorrosive Nanomaterials: Future Perspectives. Cambridge: Royal Society of Chemistry; 2022. https://doi.org/10.1039/9781839166259.
Alipanah N, Shariatmadar M, Mohammadi I, Alibakhshi E, Izadi M, Mahdavian M. Nanocomposites for anticorrosive application. Nanocomposites-Advanced Materials for Energy and Environmental Aspects, Elsevier; 2023, p. 515–78. https://doi.org/10.1016/B978-0-323-99704-1.00001-1.
Lawal SA, Medupin RO, Yoro KO, Okoro UG, Adedipe O, Abutu J, et al. Nanofluids and their application in carbon fibre reinforced plastics: A review of properties, preparation, and usage 2023.
González-Fernández L, Serrano Á, Palomo E, Grosu Y. Nanoparticle-based anticorrosion coatings for molten salts applications. Journal of Energy Storage 2023;58:106374. https://doi.org/10.1016/j.est.2022.106374.
Sharma N. Ferrite Nanoparticles for Corrosion Protection Applications. In: Sharma P, Bhargava GK, Bhardwaj S, Sharma I, editors. Engineered Ferrites and Their Applications, Singapore: Springer Nature Singapore; 2023, p. 227–40. https://doi.org/10.1007/978-981-99-2583-4_12.
Bai H. Mechanism analysis, anti-corrosion techniques and numerical modeling of corrosion in energy industry. Oil Gas Sci Technol – Rev IFP Energies Nouvelles 2020;75:42. https://doi.org/10.2516/ogst/2020031.
Farooq SA, Raina A, Mohan S, Arvind Singh R, Jayalakshmi S, Irfan Ul Haq M. Nanostructured Coatings: Review on Processing Techniques, Corrosion Behaviour and Tribological Performance. Nanomaterials 2022;12:1323. https://doi.org/10.3390/nano12081323.
Thakur A, Kaya S, Kumar A. Recent Trends in the Characterization and Application Progress of Nano-Modified Coatings in Corrosion Mitigation of Metals and Alloys. Applied Sciences 2023;13:730. https://doi.org/10.3390/app13020730.
Lawal SA, Medupin RO, Yoro KO, Ukoba KO, Okoro UG, Adedipe O, et al. Nano-titania and carbon nanotube-filled rubber seed oil as machining fluids. Materials Chemistry and Physics 2024;316:129126. https://doi.org/10.1016/j.matchemphys.2024.129126.
Attah BI, Medupin RO, Ipilakyaa TD, Okoro UG, Adedipe O, Sule G, et al. Microstructural and corrosion behaviours of dissimilar friction stir welded aluminium alloys. Manufacturing Rev 2024;11:7. https://doi.org/10.1051/mfreview/2024003.
Meier GH. Invited Review Paper in Commemoration of Over 50 Years of Oxidation of Metals: Current Aspects of Deposit-Induced Corrosion. Oxid Met 2022;98:1–41. https://doi.org/10.1007/s11085-020-10015-6.
Matamoros-Veloza A, Barker R, Vargas S, Neville A. Mechanistic Insights of Dissolution and Mechanical Breakdown of FeCO3 Corrosion Films. ACS Appl Mater Interfaces 2021;13:5741–51. https://doi.org/10.1021/acsami.0c18976.
Zea C, Alcántara J, Barranco-García R, Morcillo M, De La Fuente D. Synthesis and Characterization of Hollow Mesoporous Silica Nanoparticles for Smart Corrosion Protection. Nanomaterials 2018;8:478. https://doi.org/10.3390/nano8070478.
Kalajahi ST, Rasekh B, Yazdian F, Neshati J, Taghavi L. Green mitigation of microbial corrosion by copper nanoparticles doped carbon quantum dots nanohybrid. Environ Sci Pollut Res 2020;27:40537–51. https://doi.org/10.1007/s11356-020-10043-4.
Peres RN, Cardoso ESF, Montemor MF, De Melo HG, Benedetti AV, Suegama PH. Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection. Surface and Coatings Technology 2016;303:372–84. https://doi.org/10.1016/j.surfcoat.2015.12.049.
Song RG, Chen L, Lu H. Effects of nanoparticles on the corrosion resistance of fluoropolymer coatings on mild steel. Surface Engineering 2017;33:451–9. https://doi.org/10.1080/02670844.2016.1236226.
Alshammri GA, Fathy N, Al-Shomar SM, Alshammari AH, Sherif E-SM, Ramadan M. Effect of Al2O3 and NiO Nanoparticle Additions on the Structure and Corrosion Behavior of Sn—4% Zn Alloy Coating Carbon Steel. Sustainability 2023;15:2511. https://doi.org/10.3390/su15032511.
Shi X, Nguyen TA, Suo Z, Liu Y, Avci R. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surface and Coatings Technology 2009;204:237–45. https://doi.org/10.1016/j.surfcoat.2009.06.048.
Fernández-Álvarez M, Velasco F, Bautista A, Gonzalez-Garcia Y, Galiana B. Corrosion Protection in Chloride Environments of Nanosilica Containing Epoxy Powder Coatings with Defects. J Electrochem Soc 2020;167:161507. https://doi.org/10.1149/1945-7111/abd003.
Tian Z, Li S, Chen Y, Li L, An Z, Zhang Y, et al. Self-Healing Coating with a Controllable Release of Corrosion Inhibitors by Using Multifunctional Zinc Oxide Quantum Dots as Valves. ACS Appl Mater Interfaces 2022;14:47188–97. https://doi.org/10.1021/acsami.2c16151.
Lee J, Kuchibhotla A, Banerjee D, Berman D. Silica nanoparticles as copper corrosion inhibitors. Mater Res Express 2019;6:0850e3. https://doi.org/10.1088/2053-1591/ab2270.
Rashid SH. Synthesis, characterisation and corrosion protection performance of hybrid nanocomposite coatings. Malaysian Journal of Analytical Sciences 2014;18:21–7.
Singh S, Meena VK, Sharma M, Singh H. Preparation and coating of nano-ceramic on orthopaedic implant material using electrostatic spray deposition. Materials & Design 2015;88:278–86. https://doi.org/10.1016/j.matdes.2015.08.145.
Ammar Sh, Ramesh K, Ma IAW, Farah Z, Vengadaesvaran B, Ramesh S, et al. Studies on SiO2-hybrid polymeric nanocomposite coatings with superior corrosion protection and hydrophobicity. Surface and Coatings Technology 2017;324:536–45. https://doi.org/10.1016/j.surfcoat.2017.06.014.
Samadianfard R, Seifzadeh D, Habibi-Yangjeh A, Jafari-Tarzanagh Y. Oxidized fullerene/sol-gel nanocomposite for corrosion protection of AM60B magnesium alloy. Surface and Coatings Technology 2020;385:125400. https://doi.org/10.1016/j.surfcoat.2020.125400.
Ouyang Y, Huang Z, Fang R, Wu L, Yong Q, Xie Z-H. Silica nanoparticles enhanced polysiloxane-modified nickel-based coatings on Mg alloy for robust superhydrophobicity and high corrosion resistance. Surface and Coatings Technology 2022;450:128995. https://doi.org/10.1016/j.surfcoat.2022.128995.
Singh A, Drunka R, Smits K, Vanags M, Iesalnieks M, Joksa A, et al. Nanomechanical and Electrochemical Corrosion Testing of Nanocomposite Coating Obtained on AZ31 via Plasma Electrolytic Oxidation Containing TiN and SiC Nanoparticles. Crystals 2023;13:508. https://doi.org/10.3390/cryst13030508.
Yu L, Jia P, Song Y, Zhao B, Pan Y, Wang J, et al. EFFECT OF NANOPARTICLE ADDITIVES ON THE MICROSTRUCTURE AND CORROSION PROPERTIES OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON MAGNESIUM ALLOYS: A REVIEW. Surf Rev Lett 2023;30:2330005. https://doi.org/10.1142/S0218625X23300058.
Yao W, Qin J, Chen Y, Wu L, Jiang B, Pan F. SiO2 nanoparticles-containing slippery-liquid infused porous surface for corrosion and wear resistance of AZ31 Mg alloy. Materials & Design 2023;227:111721. https://doi.org/10.1016/j.matdes.2023.111721.
Merino E, Durán A, Ceré S, Castro Y. Hybrid Epoxy-Alkyl Sol–Gel Coatings Reinforced with SiO2 Nanoparticles for Corrosion Protection of Anodized AZ31B Mg Alloy. Gels 2022;8:242. https://doi.org/10.3390/gels8040242.
Jeong H, Alarcón‐Correa M, Mark AG, Son K, Lee T, Fischer P. Corrosion‐Protected Hybrid Nanoparticles. Advanced Science 2017;4:1700234. https://doi.org/10.1002/advs.201700234.
Gilbert N. Nanoparticle safety in doubt. Nature 2009;460:937–937. https://doi.org/10.1038/460937a.
Wang X, Pearson M, Pan H, Li M, Zhang Z, Lin Z. Nano-modified functional composite coatings for metallic structures: Part I-Electrochemical and barrier behavior. Surface and Coatings Technology 2020;401:126286. https://doi.org/10.1016/j.surfcoat.2020.126286.
Bi Y, Zaikova T, Schoepf J, Herckes P, Hutchison JE, Westerhoff P. The efficacy and environmental implications of engineered TiO 2 nanoparticles in a commercial floor coating. Environ Sci: Nano 2017;4:2030–42. https://doi.org/10.1039/C7EN00649G.
Samardžija M, Alar V, Špada V, Stojanović I. Corrosion Behaviour of an Epoxy Resin Reinforced with Aluminium Nanoparticles. Coatings 2022;12:1500. https://doi.org/10.3390/coatings12101500.
Abidin SNSZ, Azmi WH, Zawawi NNM, Ramadhan AI. Comprehensive Review of Nanoparticles Dispersion Technology for Automotive Surfaces. AE 2022;5:304–27. https://doi.org/10.31603/ae.6882.
Eremeeva N. Nanoparticles of metals and their compounds in films and coatings: A review. Foods and Raw Materials 2023;12:60–79. https://doi.org/10.21603/2308-4057-2024-1-588.
Luo T, Xu P, Guo C. Controllable Construction and Corrosion Resistance Mechanism of Durable Superhydrophobic Micro-Nano Structure on Aluminum Alloy Surface. Sustainability 2023;15:10550. https://doi.org/10.3390/su151310550.
Misiiuk K, Lowrey S, Blaikie R, Juras J, Sommers A. Study of Micro- and Nanopatterned Aluminum Surfaces Using Different Microfabrication Processes for Water Management. Langmuir 2022;38:1386–97. https://doi.org/10.1021/acs.langmuir.1c02517.
Barthwal S, Lim S-H. Rapid fabrication of a dual-scale micro-nanostructured superhydrophobic aluminum surface with delayed condensation and ice formation properties. Soft Matter 2019;15:7945–55. https://doi.org/10.1039/C9SM01256G.
Barthwal S, Lim S-H. Robust and Chemically Stable Superhydrophobic Aluminum-Alloy Surface with Enhanced Corrosion-Resistance Properties. Int J of Precis Eng and Manuf-Green Tech 2020;7:481–92. https://doi.org/10.1007/s40684-019-00031-6.
Tong W, Karthik N, Li J, Wang N, Xiong D. Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance. Langmuir 2019;35:15078–85. https://doi.org/10.1021/acs.langmuir.9b02910.
Zhang X, Wang R, Long F, Li X, Zhou T, Hu W, et al. The long-term degradation behavior of the durable superhydrophobic coating on Al matrix. Surface and Coatings Technology 2022;434:128203. https://doi.org/10.1016/j.surfcoat.2022.128203.
Xia R, Zhang B, Dong K, Yan Y, Guan Z. HD-SiO2/SiO2 Sol@PDMS Superhydrophobic Coating with Good Durability and Anti-Corrosion for Protection of Al Sheets. Materials 2023;16:3532. https://doi.org/10.3390/ma16093532.
Rivero P, Maeztu J, Berlanga C, Miguel A, Palacio J, Rodriguez R. Hydrophobic and Corrosion Behavior of Sol-Gel Hybrid Coatings Based on the Combination of TiO2 NPs and Fluorinated Chains for Aluminum Alloys Protection. Metals 2018;8:1076. https://doi.org/10.3390/met8121076.
Zhou C, Chen Q, Chen Q, Yin H, Wang S, Hu C. Preparation of TiO2 Superhydrophobic Composite Coating and Studies on Corrosion Resistance. Front Chem 2022;10:943055. https://doi.org/10.3389/fchem.2022.943055.
Haji-Savameri M, Irannejad A, Norouzi-Apourvari S, Schaffie M, Hemmati-Sarapardeh A. Evaluation of corrosion performance of superhydrophobic PTFE and nanosilica coatings. Sci Rep 2022;12:17059. https://doi.org/10.1038/s41598-022-20729-z.
Salaluk S, Jiang S, Viyanit E, Rohwerder M, Landfester K, Crespy D. Design of Nanostructured Protective Coatings with a Sensing Function. ACS Appl Mater Interfaces 2021;13:53046–54. https://doi.org/10.1021/acsami.1c14110.
Daniel MG, Song J, Ali Safiabadi Tali S, Dai X, Zhou W. Sub-10 nm Nanolaminated Al 2 O 3 /HfO 2 Coatings for Long-Term Stability of Cu Plasmonic Nanodisks in Physiological Environments. ACS Appl Mater Interfaces 2020;12:31952–61. https://doi.org/10.1021/acsami.0c06941.
Wang S, Wang Y, Zou Y, Chen G, Ouyang J, Jia D, et al. Scalable-Manufactured Superhydrophobic Multilayer Nanocomposite Coating with Mechanochemical Robustness and High-Temperature Endurance. ACS Appl Mater Interfaces 2020;12:35502–12. https://doi.org/10.1021/acsami.0c10539.
Dey S, Chatterjee S, Singh BP, Bhattacharjee S, Rout TK, Sengupta DK, et al. Development of superhydrophobic corrosion resistance coating on mild steel by electrophoretic deposition. Surface and Coatings Technology 2018;341:24–30. https://doi.org/10.1016/j.surfcoat.2018.01.005.
Miller RHB, Hu S, Weamie SJY, Naame SA, Kiazolu DG. Superhydrophobic Coating Fabrication for Metal Protection Based on Electrodeposition Application: A Review. MSCE 2021;09:68–104. https://doi.org/10.4236/msce.2021.94008.
Peng Y, Li P, Li H, Xin L, Ding J, Yin X, et al. Theoretical and experimental study of spontaneous adsorption-induced superhydrophobic Cu coating with hierarchical structures and its anti-scaling property. Surface and Coatings Technology 2022;441:128557. https://doi.org/10.1016/j.surfcoat.2022.128557.
Alderete B, Lößlein SM, Bucio Tejeda D, Mücklich F, Suarez S. Feasibility of Carbon Nanoparticle Coatings as Protective Barriers for Copper─Wetting Assessment. Langmuir 2022;38:15209–19. https://doi.org/10.1021/acs.langmuir.2c02295.
Kim M, Bhanja P, Amiralian N, Urata C, Hozumi A, Hossain MSA, et al. Mesostructured Silica Nanoparticles with Organic Corrosion Inhibitors to Enhance the Longevity of Anticorrosion Effect. Bulletin of the Chemical Society of Japan 2023;96:394–7. https://doi.org/10.1246/bcsj.20230004.
Mirhashemihaghighi S. Nanometre-thick alumina coatings deposited by ALD on metals : a comparative electrochemical and surface analysis study of corrosion properties. phdthesis. Université Pierre et Marie Curie - Paris VI, 2015.
Farhadi S. Development of nanostructured coatings for protecting the surface of aluminum alloys against corrosion and ice accretion = Développement de revêtements nanostructurés pour protéger la surface des alliages d’aluminium contre la corrosion et l’accumulation de glace. phd. Université du Québec à Chicoutimi, 2015.
Daniel MG, Song J, Ali Safiabadi Tali S, Dai X, Zhou W. Sub-10 nm Nanolaminated Al2O3/HfO2 Coatings for Long-Term Stability of Cu Plasmonic Nanodisks in Physiological Environments. ACS Appl Mater Interfaces 2020;12:31952–61. https://doi.org/10.1021/acsami.0c06941.
Barulin A, Claude J-B, Patra S, Moreau A, Lumeau J, Wenger J. Preventing Aluminum Photocorrosion for Ultraviolet Plasmonics. J Phys Chem Lett 2019;10:5700–7. https://doi.org/10.1021/acs.jpclett.9b02137.
Dogan G, Sanli UT, Hahn K, Müller L, Gruhn H, Silber C, et al. In Situ X-ray Diffraction and Spectro-Microscopic Study of ALD Protected Copper Films. ACS Appl Mater Interfaces 2020;12:33377–85. https://doi.org/10.1021/acsami.0c06873.
Bottagisio M, Balzano V, Ciambriello L, Rosa L, Talò G, Lovati AB, et al. Exploring multielement nanogranular coatings to forestall implant-related infections. Front Cell Infect Microbiol 2023;13:1128822. https://doi.org/10.3389/fcimb.2023.1128822.
Wang S, Wang S, Xue Y, Xue Y, Liu Q, Cao L, et al. Durable Nanofluids‐Infused Hierarchical Surfaces with High Corrosion and Abrasion Resistance. Adv Eng Mater 2023;25:2201292. https://doi.org/10.1002/adem.202201292.
Wang X, Tang F, Cao Q, Qi X, Pan H, Lin Z, et al. Nano-modified functional composite coatings for metallic structures: Part II—Mechanical and damage tolerance. Surface and Coatings Technology 2020;401:126274. https://doi.org/10.1016/j.surfcoat.2020.126274.
AlTarawneh M, AlJuboori S. The effect of nanolubrication on wear and friction resistance between sliding surfaces. ILT 2023;75:526–35. https://doi.org/10.1108/ILT-08-2022-0234.
Curtis CK, Marek A, Smirnov AI, Krim J. A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds. Beilstein J Nanotechnol 2017;8:2045–59. https://doi.org/10.3762/bjnano.8.205.
Schäfer C, Reinert L, MacLucas T, Grützmacher P, Merz R, Mücklich F, et al. Influence of Surface Design on the Solid Lubricity of Carbon Nanotubes-Coated Steel Surfaces. Tribol Lett 2018;66:89. https://doi.org/10.1007/s11249-018-1044-8.
Mazo C, Lopez D, Forero AM, Maya A, Lesmes M, Cortés FB, et al. Corrosion Inhibition Enhancement for Surface O&G Operations Using Nanofluids. Day 2 Wed, September 22, 2021, Dubai, UAE: SPE; 2021, p. D021S031R003. https://doi.org/10.2118/205901-MS.
Zhu P, Zhu L, Ge F, Wang G, Zeng Z. Sprayable superhydrophobic coating with high mechanical/chemical robustness and anti-corrosion. Surface and Coatings Technology 2022;443:128609. https://doi.org/10.1016/j.surfcoat.2022.128609.
Huang J, Yang M, Zhang H, Zhu J. Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings. ACS Appl Mater Interfaces 2021;13:1323–32. https://doi.org/10.1021/acsami.0c16582.
Su C, Zhou L, Yuan C, Wang X, Zhao Q, Zhao X, et al. Robust superhydrophobic composite fabricated by a dual-sized particle design. Composites Science and Technology 2023;231:109785. https://doi.org/10.1016/j.compscitech.2022.109785.
Li H, Liu L, Guo P, Sun L, Wei J, Liu Y, et al. Long-term tribocorrosion resistance and failure tolerance of multilayer carbon-based coatings. Friction 2022;10:1707–21. https://doi.org/10.1007/s40544-021-0559-4.
Zhang TF, Deng QY, Liu B, Wu BJ, Jing FJ, Leng YX, et al. Wear and corrosion properties of diamond like carbon (DLC) coating on stainless steel, CoCrMo and Ti6Al4V substrates. Surface and Coatings Technology 2015;273:12–9. https://doi.org/10.1016/j.surfcoat.2015.03.031.
Chen SN, Zhao YM, Zhang YF, Chen L, Liao B, Zhang X, et al. Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings. Surface and Coatings Technology 2021;411:126886. https://doi.org/10.1016/j.surfcoat.2021.126886.
Uzun Y. Tribocorrosion properties of plasma nitrided, Ti-DLC coated and duplex surface treated AISI 316L stainless steel. Surface and Coatings Technology 2022;441:128587. https://doi.org/10.1016/j.surfcoat.2022.128587.
Dieleman CD, Denissen PJ, Garcia SJ. Long‐Term Active Corrosion Protection of Damaged Coated‐AA2024‐T3 by Embedded Electrospun Inhibiting Nanonetworks. Adv Materials Inter 2018;5:1800176. https://doi.org/10.1002/admi.201800176.
Liu Z, Zhang B, Yu H, Zhang Z, Jiang W, Ma Z. A Smart Anticorrosive Epoxy Coating Based on Graphene Oxide/Functional Mesoporous Silica Nanoparticles for Controlled Release of Corrosion Inhibitors. Coatings 2022;12:1749. https://doi.org/10.3390/coatings12111749.
Priyanka D, Nalini D. Designing a corrosion resistance system using modified graphene oxide-epoxy microcapsules for enhancing the adhesion strength of the epoxy coatings. Applied Surface Science Advances 2022;10:100269. https://doi.org/10.1016/j.apsadv.2022.100269.
Lorwanishpaisarn N, Srik N, Jetsrisuparb K, Knijnenburg JTN, Theerakulpisut S, Okhawilai M, et al. Self-Healing Ability of Epoxy Vitrimer Nanocomposites Containing Bio-Based Curing Agents and Carbon Nanotubes for Corrosion Protection 2021. https://doi.org/10.21203/rs.3.rs-410734/v1.
Devadoss D, Asirvatham A, Kujur A, Saaron G, Devi N, John Mary S. Green synthesis of copper oxide nanoparticles from Murraya koenigii and its corrosion resistivity on Ti-6Al-4V dental alloy. Journal of the Mechanical Behavior of Biomedical Materials 2023;146:106080. https://doi.org/10.1016/j.jmbbm.2023.106080.
Yigit O, Dikici B, Senocak TC, Ozdemir N. One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surface and Coatings Technology 2020;394:125858. https://doi.org/10.1016/j.surfcoat.2020.125858.
Campanelli LC, Bortolan CC, da Silva PSCP, Bolfarini C, Oliveira NTC. Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. Journal of the Mechanical Behavior of Biomedical Materials 2017;65:542–51. https://doi.org/10.1016/j.jmbbm.2016.09.015.
Hameed RSA, Obeidat S, Qureshi MT, Al-Mhyawi SR, Aljuhani EH, Abdallah M. Silver nanoparticles – Expired medicinal drugs waste accumulated at hail city for the local manufacturing of green corrosion inhibitor system for steel in acidic environment. Journal of Materials Research and Technology 2022;21:2743–56. https://doi.org/10.1016/j.jmrt.2022.10.081.
Olasehinde EF, Agbaffa BE, Adebayo MA, Enis J. Corrosion protection of mild steel in acidic medium by titanium-based nanocomposite of Chromolaena odorata leaf extract. Materials Chemistry and Physics 2022;281:125856. https://doi.org/10.1016/j.matchemphys.2022.125856.
Al-Mhyawi SR. Green synthesis of silver nanoparticles and their inhibitory efficacy on corrosion of carbon steel in hydrochloric acid solution. International Journal of Electrochemical Science 2023;18:100210. https://doi.org/10.1016/j.ijoes.2023.100210.
Al Jabri H, Devi MG, Al-Shukaili MA. Development of polyaniline – TiO2 nano composite films and its application in corrosion inhibition of oil pipelines. Journal of the Indian Chemical Society 2023;100:100826. https://doi.org/10.1016/j.jics.2022.100826.
Beltrami M, Mavrič A, Zilio SD, Fanetti M, Kapun G, Lazzarino M, et al. A comparative study of nanolaminate CrN/Mo2N and CrN/W2N as hard and corrosion resistant coatings. Surface and Coatings Technology 2023;455:129209. https://doi.org/10.1016/j.surfcoat.2022.129209.
Ituen E, Yuanhua L, Verma C, Alfantazi A, Akaranta O, Ebenso EE. Synthesis and characterization of walnut husk extract-silver nanocomposites for removal of heavy metals from petroleum wastewater and its consequences on pipework steel corrosion. Journal of Molecular Liquids 2021;335:116132. https://doi.org/10.1016/j.molliq.2021.116132.
Ali Asaad M, Bothi Raja P, Fahim Huseien G, Fediuk R, Ismail M, Alyousef R. Self-healing epoxy coating doped with Elaesis guineensis/silver nanoparticles: A robust corrosion inhibitor. Construction and Building Materials 2021;312:125396. https://doi.org/10.1016/j.conbuildmat.2021.125396.
Berisha A. Ab inito exploration of nanocars as potential corrosion inhibitors. Computational and Theoretical Chemistry 2021;1201:113258. https://doi.org/10.1016/j.comptc.2021.113258.
Fetouh HA, Hefnawy A, Attia AM, Ali E. Facile and low-cost green synthesis of eco-friendly chitosan-silver nanocomposite as novel and promising corrosion inhibitor for mild steel in chilled water circuits. Journal of Molecular Liquids 2020;319:114355. https://doi.org/10.1016/j.molliq.2020.114355.
Chilkoor G, Sarder R, Islam J, ArunKumar KE, Ratnayake I, Star S, et al. Maleic anhydride-functionalized graphene nanofillers render epoxy coatings highly resistant to corrosion and microbial attack. Carbon 2020;159:586–97. https://doi.org/10.1016/j.carbon.2019.12.059.
Li Z, Ni H, Chen Z, Ni J, Chen R, Fan X, et al. Enhanced tensile properties and corrosion resistance of stainless steel with copper-coated graphene fillers. Journal of Materials Research and Technology 2020;9:404–12. https://doi.org/10.1016/j.jmrt.2019.10.069.
AlFalah MGK, Kamberli E, Abbar AH, Kandemirli F, Saracoglu M. Corrosion performance of electrospinning nanofiber ZnO-NiO-CuO/polycaprolactone coated on mild steel in acid solution. Surfaces and Interfaces 2020;21:100760. https://doi.org/10.1016/j.surfin.2020.100760.
Ladan M, Basirun WJ, Kazi SN, Rahman FA. Corrosion protection of AISI 1018 steel using Co-doped TiO2/polypyrrole nanocomposites in 3.5% NaCl solution. Materials Chemistry and Physics 2017;192:361–73. https://doi.org/10.1016/j.matchemphys.2017.01.085.
Trung VQ, Hoan PV, Phung DQ, Duc LM, Hang LTT. Double corrosion protection mechanism of molybdate-doped polypyrrole/montmorillonite nanocomposites. Journal of Experimental Nanoscience 2014.
Zhang Y, Lu S, Li D, Duan H, Duan C, Zhang J, et al. Inhibition mechanism of air nanobubbles on brass corrosion in circulating cooling water systems. Chinese Journal of Chemical Engineering 2023. https://doi.org/10.1016/j.cjche.2023.03.014.
Wang Y, Yang Y, Liu M. Electrophoretic deposition of halloysite nanotubes/PVA composite coatings for corrosion protection of metals. Applied Materials Today 2022;29:101657. https://doi.org/10.1016/j.apmt.2022.101657.
Benea L, Simionescu – Bogatu N, Chiriac R. Electrochemically obtained Al2O3 nanoporous layers with increased anticorrosive properties of aluminum alloy. Journal of Materials Research and Technology 2022;17:2636–47. https://doi.org/10.1016/j.jmrt.2022.02.038.
Sajedi Alvar F, Heydari M, Kazemzadeh A, Vaezi MR, Nikzad L. Synthesis and characterization of corrosion-resistant and biocompatible Al2O3–TiB2 nanocomposite films on pure titanium. Ceramics International 2020;46:4215–21. https://doi.org/10.1016/j.ceramint.2019.10.140.
Ziat Y, Hammi M, Zarhri Z, Laghlimi C. Epoxy coating modified with graphene: A promising composite against corrosion behavior of copper surface in marine media. Journal of Alloys and Compounds 2020;820:153380. https://doi.org/10.1016/j.jallcom.2019.153380.
Sarraf M, Nasiri-Tabrizi B, Dabbagh A, Basirun WJ, Sukiman NL. Optimized nanoporous alumina coating on AA3003-H14 aluminum alloy with enhanced tribo-corrosion performance in palm oil. Ceramics International 2020;46:7306–23. https://doi.org/10.1016/j.ceramint.2019.11.227.
Elbasuney S, Gobara M, Zoriany M, Maraden A, Naeem I. The significant role of stabilized colloidal ZrO2 nanoparticles for corrosion protection of AA2024. Environmental Nanotechnology, Monitoring & Management 2019;12:100242. https://doi.org/10.1016/j.enmm.2019.100242.
Ulaeto SB, Nair AV, Pancrecious JK, Karun AS, Mathew GM, Rajan TPD, et al. Smart nanocontainer-based anticorrosive bio-coatings: Evaluation of quercetin for corrosion protection of aluminium alloys. Progress in Organic Coatings 2019;136:105276. https://doi.org/10.1016/j.porgcoat.2019.105276.
Ren S, Hao Y, Cui M, Pu J, Huang L-F, Wang L. Correlated morphological and chemical mechanisms for the superior corrosion resistance of alumina-deposited 2D nanofilms on copper. Materialia 2020;11:100697. https://doi.org/10.1016/j.mtla.2020.100697.
Hosseinpour S, Davoodi A, Sedighi A, Tofighi F. Analytical Techniques for Corrosion-Related Characterization of Graphene and Graphene-Based Nanocomposite Coatings. Corrosion Protection of Metals and Alloys Using Graphene and Biopolymer Based Nanocomposites, CRC Press; 2021.
Ndukwe A, Etim D, Uchenna A, Chibuike O, Okon K, Agu P. The inhibition of mild steel corrosion by papaya and neem extracts. Zaštita Materijala 2023;64:274–82. https://doi.org/10.5937/zasmat2303274N.
Gunavathy N, Murugavel SC. Corrosion Inhibition Studies of Mild Steel in Acid Medium Using Musa Acuminata Fruit Peel Extract. E-Journal of Chemistry 2012;9:487–95. https://doi.org/10.1155/2012/952402.
Dave PN, Chopda LV, Sahu L. Applications of Nanomaterials in Corrosion Protection Inhibitors and Coatings. In: Verma C, Hussain CM, Quraishi MA, editors. ACS Symposium Series, vol. 1418, Washington, DC: American Chemical Society; 2022, p. 189–212. https://doi.org/10.1021/bk-2022-1418.ch009.
Elshan Soltanov ES, Kamran Huseynov KH, Yusif Samadov YS. INVESTIGATION OF MODERN NANO-COMPOSITE COATINGS USED IN PASSIVE CORROSION OF METAL STRUCTURES. PAHTEI 2023;29:134–40. https://doi.org/10.36962/PAHTEI29062023-134.
Verma C, Hussain CM, Quraishi MA, editors. Functionalized Nanomaterials for Corrosion Mitigation: Synthesis, Characterization, and Applications. vol. 1418. Washington, DC: American Chemical Society; 2022. https://doi.org/10.1021/bk-2022-1418.
Muresan LM. Nanocomposite Coatings for Anti-Corrosion Properties of Metallic Substrates. Materials 2023;16:5092. https://doi.org/10.3390/ma16145092.
Das S, Bezbarua P, Das S. Sustainable nanomaterial coatings for anticorrosion. Nanomaterials for Sustainable Tribology. 1st ed., Boca Raton: CRC Press; 2023, p. 203–14. https://doi.org/10.1201/9781003306276-13.
Verma J, Goel S. A perspective on nanocomposite coatings for advanced functional applications. Nanofab 2023;8. https://doi.org/10.37819/nanofab.008.270.
Gupta A, Verma J, Kumar D. Corrosion mitigation using polymeric nanocomposite coatings. Nanomaterials for Sustainable Tribology. 1st ed., Boca Raton: CRC Press; 2023, p. 191–202. https://doi.org/10.1201/9781003306276-12.
Aslam R, Mobin M, Aslam J. Nanomaterials as corrosion inhibitors. Inorganic Anticorrosive Materials, Elsevier; 2022, p. 3–20. https://doi.org/10.1016/B978-0-323-90410-0.00001-5.
Verma C, Quraishi MA. Nanotechnology in the service of corrosion science: considering graphene and derivatives as examples. Corrosion Engineering, Science and Technology 2022;57:580–97. https://doi.org/10.1080/1478422X.2022.2093690.