A Review of the Mechanical Properties of 2D Transition Metal Carbides (MXene)-Reinforced Metal and Polymer Composites
DOI:
https://doi.org/10.62638/ZasMat1157Keywords:
MXene, polymer matrix composite, metal matrix composite, Ti 3 C 2 T x, tensile property.Abstract
In the modern era, two-dimensional MXenes—commonly known as transition metal carbides, nitrides, and carbonitrides—have emerged as a new class of competitive materials for developing composites across various applications. As a 2D material, MXene-reinforced composites represent an emerging field with significant potential due to their remarkable optical, mechanical, electrical, and electrochemical properties. Additionally, their stability at high temperatures highlights their uniqueness in composite materials. Consequently, MXenes are regarded as revolutionary materials for functional and structural composite applications, offering tunable electrical, thermochemical, and physicomechanical properties. This review examines recent advancements in the use of MXenes as reinforcing elements in metal matrix composites (MMCs) and polymer matrix composites (PMCs), while providing insights for future research in this area.
References
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A,K. Geim (2005) Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102(30), 10451-10453. https://doi.org/10.1073/pnas.0502848102
R. Khan, S. Andreescu (2020) MXenes-based bioanalytical sensors: design, characterization, and applications. Sensors, 20(18), 5434. https://doi.org/10.3390/s20185434
C. Lee, X. Wei, J. W. Kysar, J. Hone (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 321(5887), 385-388. https://doi.org/10.1126/science.115799
J. W. Suk, R. D. Piner, J. An, R. S. Ruoff (2010) Mechanical properties of monolayer graphene oxide. ACS nano, 4(11), 6557-6564. https://doi.org/10.1021/nn101781v
Y. Chen, K. Yang, B. Jiang, J. Li, M. Zeng, L. Fu (2017). Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 5(18), 8187-8208. https://doi.org/10.1039/C7TA00816C
H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, S. Z. Qiao (2018) Emerging two-dimensional nanomaterials for electrocatalysis. Chemical reviews, 118(13), 6337-6408.
https://doi.org/10.1021/acs.chemrev.7b00689
L. Dai (2013) Functionalization of graphene for efficient energy conversion and storage. Accounts of chemical research, 46(1), 31-42. https://doi.org/10.1021/ar300122m
X. Peng, L. Peng, C. Wu, Y. Xie (2014) Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 43(10), 3303-3323. https://doi.org/10.1039/C3CS60407A
M. F. El-Kady, Y. Shao, R. B. Kaner (2016) Graphene for batteries, supercapacitors and beyond. Nature Reviews Materials, 1(7):1-4. https://doi.org/10.1039/C3CS60407A
B. Xu and Y. Gogotsi (2020) MXenes: From Discovery to Applications. Advanced Functional Materials, 30(47).
https://doi.org/10.1002/adfm.202007011
M.Naguib, O.Mashtalir, J.Carle, V.Presser, J.Lu, L.Hultman, M.W.Barsoum (2012) Two-dimensional transition metal carbides. ACS nano, 6(2), 1322-1331. https://doi.org/10.1021/nn204153h
M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, Y. Gogotsi (2014) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced materials, 27(2).
https://doi.org/10.1002/adma.201404140
Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li, G. Liang, C. Zhi (2019) A wholly degradable, rechargeable Zn–Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS nano, 13(7):8275-83. https://doi.org/10.1021/acsnano.9b03650
L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai, Z. Wang, W. Huang (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676-16681.
https://doi.org/10.1073/pnas.1414215111
M. Q Zhao, C. E.Ren, Z. Ling, M.R. Lukatskaya, C. Zhang, K.L. Van Aken, Y. Gogotsi (2014) Flexible MXene/carbon nanotube composite paper with high volumetric capacitance. Advanced materials, 27(2). https://doi.org/10.1002/adma.201404140
Q. Yang, Z. Huang, X. Li, Z. Liu, H. Li, G. Liang, C. Zhi (2019) A wholly degradable, rechargeable Zn–Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS nano, 13(7), 8275-8283. https://doi.org/10.1021/acsnano.9b03650
Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, Y.Gogotsi (2014) Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111(47), 16676-16681. https://doi.org/10.1073/pnas.141421511
L. Zhao, B. Dong, S. Li, L. Zhou, L. Lai, Z. Wang, W. Huang (2017) Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2T x nanosheets for electro-catalytic oxygen evolution. ACS nano, 11(6), 5800-5807. https://doi.org/10.1021/acsnano.7b01409
X. Wu, Z. Wang, M. Yu, L. Xiu, and J. Qiu (2017) Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Advanced Materials, 29(24), 1607017. https://doi.org/10.1002/adma.201607017
Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, S. Guo (2018) The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Advanced materials, 30(43), 1803220.
https: //doi.org/10.1002/adma.201803220
R. H. Fang, A. V. Kroll, W. Gao, and L. Zhang (2018) Cell membrane coating nanotechnology. Advanced materials, 30(23), 1706759. https://doi.org/10.1002/adma.201706759
C. Wang, H. Xie, S. Chen, B. Ge, D. Liu, C. Wu, L. Song (2018) Atomic cobalt covalently engineered interlayers for superior lithium‐ion storage. Advanced Materials, 30(32), 1802525. https://doi.org/10.1002/adma.201802525
X. Yin, C. Liang, Y. Feng, H. Zhang, Y. Wang, Y. Li (2019) Research progress on synthetic scaffold in metabolic engineering-a review. Sheng wu Gong Cheng xue bao= Chinese Journal of Biotechnology, 35(3), 363-374. https://doi.org/10.13345/j.cjb.180298
K. Rasool, R. P. Pandey, P. A. Rasheed, S. Buczek, Y. Gogotsi, and K. A. Mahmoud (2019) Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes). Materials Today, 30, 80-102. https://doi.org/10.1016/j.mattod.2019.05.017
M.W. Barsoum (2013) MAX phases: properties of machinable ternary carbides and nitrides. John Wiley & Sons.
M. Li, S. Wang, Q. Wang, F. Ren, Y. Wang (2021) Microstructure and tensile properties of Ni nano particles modified MXene reinforced copper matrix composites. Materials Science and Engineering: A, 808, 140932.
https://doi.org/10.1016/j.msea.2021.140932
S. Huang, K. C. Mutyala, A. V. Sumant, V. N. Mochalin (2021) Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/ graphene coatings. Materials Today Advances, 9, 100133. https://doi.org/10.1016/j.mtadv.2021.100133
M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi (2014) 25th anniversary article: MXenes: a new family of two‐dimensional materials. Advanced materials, 26(7), 992-1005. https://doi.org/10.1002/adma.201304138
F. Shahzad, M. Alhabeb, C. B. Hatter, B. Anasori, S. Man Hong, C. M. Koo, Y. Gogotsi (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137-1140. https://doi.org/10.1126/science.aag242
J. Hu, S. Li, J. Zhang, Q. Chang, W. Yu, Y. Zhou (2020) Mechanical properties and frictional resistance of Al composites reinforced with Ti3C2Tx MXene. Chinese Chemical Letters, 31(4), 996-999. https://doi.org/10.1016/j.cclet.2019.09.004
M. Li, S. Wang, Q. Wang, F. Ren, Y. Wang (2021) Preparation, microstructure and tensile properties of two dimensional MXene reinforced copper matrix composites. Materials Science and Engineering: A, 803, 140699.
https://doi.org//10.1016/j.msea.2020.140699
Y. Fan, L. Ye, R. Zhang, F. Guo, Q. Tian, Y. Zhang, X. Li (2021) Effects of 2D Ti3C2TX (Mxene) on mechanical properties of ZK61 alloy. Journal of Alloys and Compounds, 862, 158480. https://doi.org/10.1016/j.jallcom.2020.158480
T. Lan, T. J. Pinnavaia (1994) Clay-reinforced epoxy nanocomposites. Chemistry of materials, 6(12), 2216-2219. https://doi.org/10.1021/cm00048a006
E. Omrani, P. L. Menezes, P. K. Rohatgi (2016) State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal, 19(2), 717-736. https://doi.org/10.1016/j.jestch.2015.10.007
T. Subhani, M. Latif, I. Ahmad, S. A. Rakha, N. Ali, A. A. Khurram (2015) Mechanical performance of epoxy matrix hybrid nanocomposites containing carbon nanotubes and nanodiamonds. Materials & Design, 87, 436-444.
https://doi.org/10.1016/j.matdes.2015.08.059.
S. M. R. Khalili, M. Najafi, and R. Eslami-Farsani (2017) Effect of thermal cycling on the tensile behavior of polymer composites reinforced by basalt and carbon fibers. Mechanics of composite materials, 52, 807-816.
https://doi.org/10.1007/s11029-017-9632-5
B. S. Ünlü, E. Atik, and S. Köksal (2009) Tribological properties of polymer-based journal
bearings. Materials & Design, 30(7), 2618-2622. https://doi.org/10.1016/j.matdes.2008.11.018
F. Bahari-Sambran, J. Meuchelboeck, E. Kazemi-Khasragh, R. Eslami-Farsani, S. A. Chirani (2019) The effect of surface modified nanoclay on the interfacial and mechanical properties of basalt fiber metal laminates. Thin-Walled Structures, 144, 106343. https://doi.org/10.1016/j.tws.2019.106343
H. Aghamohammadi, M. Bakhtiari, R. Eslami-Farsani (2020) An experimental investigation on the synthesis of fluorographene by electrochemical method in the mixture of sulfuric and hydrofluoric acid electrolytes. Ceramics International, 46(16), 25189-25199.
https://doi.org/10.1016/j.ceramint.2020.06.308
S. H. Abbandanak, H. Aghamohammadi, E. Akbarzadeh, N. Shabani, R. Eslami-Farsani, M. Kangooie, M. H. Siadati (2019) Morphological/ SAXS/WAXS studies on the electrochemical synthesis of graphene nanoplatelets. Ceramics International, 45(16), 20882-20890.
https://doi.org/10.1016/j.ceramint.2019.07.077
R. Eslami-Farsani, H. Aghamohammadi, S. M. R. Khalili, H. Ebrahimnezhad-Khaljiri, H. Jalali (2022) Recent trend in developing advanced fiber metal laminates reinforced with nanoparticles: A review study. Journal of Industrial Textiles, 51(5_suppl), 7374S-7408S. https://doi.org/10.1177/1528083720947106
R. Keshavarz, H. Aghamohammadi, Eslami-Farsani (2020) The effect of graphene nanoplatelets on the flexural properties of fiber metal laminates under marine environmental conditions. International Journal of Adhesion and Adhesives, 103, 102709. https://doi.org/10.1016/j.ijadhadh.2020.102709
H. Aghamohammadi, R. Eslami-Farsani, A. Tcharkhtchi (2020) The effect of multi-walled carbon nanotubes on the mechanical behavior of basalt fibers metal laminates: an experimental study. International Journal of Adhesion and Adhesives, 98, 102538.
https://doi.org/10.1016/j.ijadhadh.2019.102538
D. C. Davis, J. W. Wilkerson, J. Zhu, D. O. Ayewah (2010) Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology. Composite Structures, 92(11), 2653-2662.
https://doi.org/10.1016/j.compstruct.2010.03.019
J. Zou, X. Zhang, J. Zhao, C. Lei, Y. Zhao, Y. Zhu, Q. Li (2016) Strengthening and toughening effects by strapping carbon nanotube cross-links with polymer molecules. Composites Science and Technology, 135, 123-127.
https://doi.org/10.1016/j.compscitech.2016.09.019
Y. Li, S. Wang, E. He, Q. Wang (2016) The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites. Carbon, 106, 106-109. https://doi.org/10.1016/j.carbon.2016.04.077
H. Ebrahimnezhad‐Khaljiri, R. Eslami‐Farsani, S. Arbab Chirani (2020) Microcapsulated epoxy resin with nanosilica‐urea formaldehyde composite shell. Journal of Applied Polymer Science, 137(16), 48580. https://doi.org/10.1002/app.48580
L. Ma, Y. Zhu, P. Feng, G. Song, Y. Huang, H. Liu, Z. Guo (2019) Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Composites Part B: Engineering, 176, 107078.
https://doi.org/10.1016/j.compositesb.2019.107078
J. Yu, W. Zhao, Y. Wu, D. Wang, R. Feng (2018) Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Applied Surface Science, 434, 1311-1320. https://doi.org/10.1016/j.apsusc.2017.11.204
F. Bahari-Sambran, R. Eslami-Farsani, S. Arbab Chirani (2020) The flexural and impact behavior of the laminated aluminum-epoxy/basalt fibers composites containing nanoclay: an experimental investigation. Journal of Sandwich Structures & Materials, 22(6), 1931-1951.
https://doi.org/10.1177/10996362187926
H. Aghamohammadi, S. N. H. Abbandanak, R. Eslami-Farsani, S. H. Siadati (2018) Effects of various aluminum surface treatments on the basalt fiber metal laminates interlaminar adhesion. International Journal of Adhesion and Adhesives, 84, 184-193.