Influence of Nd dopant on the structural properties of barium zirconium titanate perovskite
DOI:
https://doi.org/10.62638/ZasMat1146Keywords:
Barium Zirconium Titanate, Neodymium, Ball milling, Crystallographic Structure, Surface morphologyAbstract
Barium zirconium titanate (BZT) nanocomposite powder was prepared using the solid-state reaction method. To enhance the structural properties of BZT, neodymium (Nd) was doped at various concentration levels. The thermal stability of Nd-doped BZT was analyzed through a calcination process conducted at temperatures of 1150, 1200, 1250, 1300, and 1350 ℃ for 4 hours. The XRD spectra of the sample calcined at 1350 ℃ for 4 hours exhibited significant peaks compared to samples calcined at lower temperatures. The results indicated that the crystallographic properties of the sample improved with increasing Nd concentrations. FTIR spectra confirmed the presence of BZT and showed corresponding band shifts with the addition of Nd. As the Nd percentage in BZT increased, the broad band positions shifted to a higher wavenumber range, from [699–479] cm⁻¹ to [746–484] cm⁻¹. The crystallographic nature of TiOx, ZrOx, and NdxOy compounds was confirmed by the vibrational band shifts towards a lower wavenumber range, from [746–484] cm⁻¹ to [735–480] cm⁻¹. Field emission scanning electron microscopy images revealed that Nd-doped BZT samples exhibited higher porosity compared to undoped BZT.
References
B.G. Naik, S.V.J.Chandra, S.Uthanna (2021) Influence of oxygen partial pressure on the structural, optical and electrical properties of magnetron sputtered Zr0.7Nb0.3O2 films, Appl. Phys. A, 127, 127. doi: https://doi.org/10.1007/s00339-021-05136-x.
B. Vaishali, D. Tripathi (2024) Tuning low frequency dielectric properties of flexible ternary polymer blend film reinforced with bio- ionic liquid for the application in green electronics., Zastita Materijala 65 (1), 158. : https://doi.org/10.62638/ZasMat1001.
S.V.Jagadeesh Chandra, E. Fortunato, R. Martins, C.J. Choi (2012) Modulations in effective work function of platinum gate electrode in metal-oxide semiconductor devices, Thin Solid Films, 520, 4556-67. https://doi.org/10.1016/j.tsf.2011.10.137.
M. Reda, S.I. El-Dek, M. M. Arman (2022) Improvement of ferroelectric Properties via Zr doping in barium titanate nanoparticles, J Mater Sci: Mater Electron., 33, 1675.
D.J. Shin, D.H. Lim, B.K. Koo, M.S. Kim, I.S. Kim, S.J. Jeong (2020) Porous sandwich structures based on BaZrTiO3–BaCaTiO3 ceramics for piezoelectric energy harvesting, Journal of Alloys and Compounds, 831, 154792. doi: 10.1016/j.jallcom.2020.154792.
X.G. Tang, K.H. Chew, H.L.W. Chan (2004) Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics, Acta Mater., 52(17), 5177-5183. https://doi.org/10.1016/j.actamat.2004.07.028.
S.K. Ghosh, M. Ganguly, S.K. Rout, S. Chanda, T.P. Sinha (2014) Structural, optical and dielectric relaxor properties of neodymium doped cubic perovskite (Ba(1−x)Nd2x/3)(Zr0.3Ti0.7)O3, Solid State Sci., 30, 68-77.doi.org/10.1016/j.solidstatesciences.2014.02.007
R. Sagar, S. Madolappa, R. L. Raibagkar (2012) Electrical, dielectric and pyroelectric behavior of neodymium substituted barium zirconium titanate, Solid State Sci., 14(2), 211–215. https://doi.org/10.1016/j.solidstatesciences.2011.11.006.
P.S. Aktaş (2020) Structural investigation of barium zirconium titanate Ba(Zr0.5Ti0.5)O3 particles synthesized by high energy ball milling process, J. Chem. Sci., 132(1), 130. https://doi.org/10.1007/s12039-020-01837-7.
T. Maiti, R. Guo, A.S. Bhalla (2007) Enhanced electric field tunable dielectric properties of BaZrxTi(1−x)O3 relaxor ferroelectrics, Appl. Phys. Lett., 90, 182901-12. https://doi.org/10.1063/1.2734922.
S.B. Reddy, K.P. Rao, M.S.R. Rao (2009) Effect of La substitution on the “structural and dielectric properties of BaZr0.1Ti0.9O3 ceramics, J Alloys Comp., 481, 692-696. https://doi.org/10.1016/j.jallcom.2009.03.075.
S. Mittal, R. Laishram, K.C. Singh (2018) Improved electrical properties of lead-free neodymium doped Ba0.85Ca0.15Zr0.1Ti0.9O3 piezoceramics, Mater. Res. Bullet., 105, 253-264. https://doi.org/10.1016/j.materresbull.2018.04.036.
S. Sasikumar, T.K. Thirumalaisamy, S.S. Kumar, S.A. Bahadur, D.Sivaganesh, I.B. Shameembanu (2020) Effect of Neodymium doping in BaTiO3 ceramics on structural and Ferro electric properties, J Mater. Sci. Mater. Electron., 31, 1535. https://doi.org/10.1007/s10854-019-02670-6.
N.A. Rejab, S. Sreekantan, K.A. Razak, Z.A. Ahmad (2011) Structural characteristics and dielectric properties of neodymium doped barium titanate, J Mater Sci: Mater. Electron., 22, 167-176. https://doi.org/10.1007/s10854-010-0108-9.
Z. Wenxing, C. Lixin, W. Wenwen, S. Ge, L. Wei (2013) Effects of neodymium doping on dielectric and optical properties of Ba(1-x)NdxTi1.005O3 ceramics, Ceramics-Silikaty 57(2), 146-155.
Z. Sun, Y. Pu, Z. Dong, Y. Hu, X. Liu, P. Wang (2014) Effect of Zr4þ content On the TC range anddielectricandferroelectric properties of BaZrxTi(1-x)O3 ceramics prepared by microwave sintering, Ceramic. Intern., 40, 3589-3595. https://doi.org/10.1016/j.ceramint.2013.09.069
M. Reda, S.I. El-Dek, M.M. Arman (2022) Improvement of ferroelectric properties via Zr doping in barium titanate nanoparticles. J Mater Sci: Mater Electron 33, 16753–76. https://doi.org/10.1007/s10854-022-08541-x.