Inhibition of marine corrosion of thermo mechanically treated rod using green synthesized iron oxide nanoparticles

Authors

DOI:

https://doi.org/10.62638/ZasMat1142

Keywords:

nanoparticles, green nanoparticles, marine structure corrosion, TMT rod Corrosion, brackish water corrosion

Abstract

The present study investigates the use of iron oxide nanoparticles synthesized from Ficus tsjahelas a protective coating for Thermo Mechanically Treated (TMT) rods in a marine environment. The method started with the extraction of the inhibitor from plant leaves using ethanol, followed by the preparation of iron oxide nanoparticles. Then (TMT) rods were coated with these FeNPs and exposed to the corrosive conditions of marine environment. In this study iron oxide nanoparticles were produced using chemical precipitation approach and the particle size effects are fully studied by applying techniques such as Fourier transform infrared spectroscopy (FT-IR), ultraviolet visible spectroscopy (UV-Visible) and SEM. Interestingly when (TMT) rods were coated with 10 layers of FeNPs, the corrosion inhibition efficiency increased to 94.1% for 8mm rods, 95.4% for 10mm rods and 98.7% for 16mm rods respectively. Furthermore, the inhibitive results corresponded with the Langmuir adsorption isotherm indicating that the inhibitory effect of FeNPs follows a physical adsorption process.

References

B.A.Shaw, R.G.Kelly, (2006) what is corrosion? Electrochem. Soc. Interface., 15, 24– 26.

https://doi.org/10.1149/2.f06061if

A.Singh, E.E. Ebenso, M.A.Quraishi, M. Mobin, M. Rizvi, M (2012) Corrosion inhibition of carbon steel in HCl solution by some plant extracts. Int. J. Corros., Article ID 897430. https://dx.doi.org/10.1155/2012/897430.

G.F.Hays., (2010) Now is the Time. https://www.scientific.net/AMR.95.-2.pdf (Accessed on 02 June, 2024).

D. Valença, K.G.B. Alves, C.P. de Melo, N. Bouchonneau (2015) Study of the efficiency of polypyrrole/ZnO nanocomposites as additives in anticorrosion coatings. Mater. Res, 18(2):273–278.

https://doi.org/10.1590/1516-1439.371614

S.K.Sharma, P.Anjali, O.L.Bassey,(2015) Potential of Azadirachta indica as a green corrosion inhibitor against mild steel, aluminum, and tin: a review. J Anal Sci Technol. 6,26. https://doi.org/10.1186/s40543-015-0067-0

S.A. Umoren, M.M.Solomon, (2014) Recent developments on the use of polymers as corrosion inhibitors: a review. Open Mater. Sci, 8(1):39–54. https://doi.org/10.2174/1874088X01408010039

J.Weber, (1983) Current corrosion protection problems. Mater. Des, 4(2):723–727

https://doi.org/10.1016/0261-3069(83)90137-1

K.Andisheh, A.Scott, A.Palermo, (2016) Seismic Behaviour of Corroded RC Bridges: Review and Research Gaps. Int. J. Corros. 3075184. https://doi.org/10.1155/2016/3075184

K.Andisheh, A.Scott, A.Palermo, D.Clusas, (2019) Influence of chloride corrosion on the effective mechanical properties of steel reinforcement. Struct. Infrastruct. Eng. 15, 1036–1048.

https://doi.org/10.1080/15732479.2019.1594313

R.A.Hawileh, J.A. Abdalla, A.Al Tamimi, K. Abdelrahman, F. Oudah, (2011) Behavior of Corroded Steel Reinforcing Bars Under Monotonic and Cyclic Loadings. Mech. Adv. Mater. Struct., 18, 218 - 224.

https://doi.org/10.1080/15376494.2010.499023

W.Zhang, X. Song, X.Gu, S. Li, (2012) Tensile and fatigue behavior of corroded rebars. Constr. Build. Mater., 34, 409–417. https://doi.org/10.1016/j.conbuildmat.2012.02.071

M.Oyado, T.Kanakubo, T.Sato, Y.Yamamoto, (2011) Bending performance of reinforced concrete member deteriorated by corrosion. Struct. Infrastruct. Eng., 7, 121–130. https://doi.org/10.1080/15732471003588510

D.Proske, S. Hostettler, H.Friedl, (2020) Correction Factors for Collapse Probability of Bridges. Beton Stahlbetonbau, 115, 128–135. https://doi.org/10.1680/jbren.18.00002

D.Proske, M.Sykora, M.Gutermann, (2020) Correction of failure probability of bridges based on experimental load tests. Bautechnik., 98, 80, https://doi.org/10.1002/cepa.2022

H.W.Song, V. Saraswathy S. Muralidharan, C.H. Lee, K. Thangavel, (2009) Corrosion performance of steel in composite concrete system admixed with chloride and various alkaline nitrites, Corrosion Engineering, Science and Technology, Vol 44 No. 6 . https://doi.org/10.1179/174327809X397848

P.Garces, P.Saura, A.Mendez, E.Zornoza, C. Andrade, (2008) Effect of nitrite in corrosion of reinforcing steel in neutral and acid solutions simulating the electrolytic environments of micropores of concrete in the propagation period, Corrosion science, 50, 498–509. https://doi.org/10.1016/j.corsci.2007.08.016

T.B.Asafa, J.K.Odusote, O.S. Ibrahim, A.Lateef, M.O. Durowoju, M.A. Azeez, T.A.Yekeen, I.C. Oladipo, E.A.Adebayo, J.A.Badmu1, Y.K. Sanusi, O..Adedokun (2020) Inhibition efficiency of silver nanoparticles solution on corrosion of mild steel, stainless steel and aluminum in 1.0 M HCl medium. IOP Conf. Series: Materials Science and Engineering 805 012018. https://doi.org/10.1088/1757- 899X/805/1/012018

O.V.Kharissova, H.V. Rasika Dias, B.L. Kharisov, B.Olvera Perez, V.M.Jimenez Perez, (2013) The greener synthesis of nanoparticles. Trends Biotechnol., 31 (4) pp 240–248. https://doi.org/10.1016/j.tibtech.2013.01.003

M.Sivaramakrishnan, V.Jagadeesan Sharavanan, D.Karaiyagowder, Y. Meganathan, B.S.Devaraj, S.Natesan, R. Kothandan, K.Kandaswamy,(2019) Green Synthesized Silver Nanoparticles Using Aqueous Leaf Extracts of Leucas Aspera Exhibits Antimicrobial and Catalytic Dye Degradation Properties. SN Appl. Sci., 1.

https://doi.org/10.1007/s42452-019-0221-1

P.Taheri, A. Mansouri , B.Bachour, A.Link, N. Ahuja, M.Z. Exova, (2017) Inspection and mitigation of underground corrosion at anchor shafts of telecommunication. NACE,International Corrosion Conference & Expo, pp 72- 74

E. Roduner, (2006) Size matters: why nano-materials are different. Chem. Soc. Rev 35(7):583 https://doi.org/10.1039/B502142C

F.Yang, X.Li, Z.Dai, T.Liu W.Zheng H.Zhao, L.Wang, (2017) Corrosion inhibition of poly-dopamine nanoparticles on mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 12 (8) pp 7469-7480.

https://doi.org/10.20964/2017.08.52

D.Abdeen, M. El Hachach, M. Koc, M.Atieh, (2019) A review on the corrosion behaviour of nano-coatings on metallic substrates.Mater 12(2),210. https://doi.org/10.3390/ma12020210

M.Riaz, M.Ismail, B.Ahmad, N.Zahid, G.Jabbour, M.S.Khan, V.Mutreja, S.Sareen, A.Rafiq, M.Faheem (2020) Characterizations and Analysis of the Antioxidant, Antimicrobial, and Dye Reduction Ability of Green Synthesized Silver Nanoparticles. Green Process. Synth. 9, 693–705. https://doi.org/10.1515/gps-2020-0064

S.Anantharaman, R. Rego, M. Muthakka, T. Anties, H.Krishna, (2020) Andrographis Paniculata-Mediated Synthesis of Silver Nanoparticles: Antimicrobial Properties and Computational Studies. SN Appl. Sci.2 https://doi.org/10.1007/s42452-020-03394-7

S.K.Biswal, M.Behera, A.S.Rout, Tripathy, (2021) A. Green Synthesis of Silver Nanoparticles Using Raw Fruit Extract of Mimusops Elengi and Their Antimicrobial Study. Biointerface Res. Appl. Chem., 11, 10040–10051.

https://doi.org/10.33263/BRIAC113.1004010051

S.V.Ganachari, R. Bhat, R.Deshpande, A. Venkataraman, (2012) Extracellular Biosynthesis of Silver Nanoparticles Using Fungi Penicillium Diversum and Their Antimicrobial Activity Studies. BioNanoScience, 2, 316–321.

https://doi.org/10.1007/s12668-012-0046-5

S.V. Ganachari, R.Deshpande, R.Bhat, N.V.S Rao, D.S Huh, A.Venkataraman, (2011) Gas Sensing Characteristic of Biofunctionalized Gold Nanoparticles. J. Bionanoscience., 5, 107–112.

S.Rehman, R.Farooq, R.Jermy, S.M.Asiri, V. Ravinayagam, R.Al Jindan, Z. Alsalem, M.A.Shah, Z. Reshi, H. Sabit, (2020) A Wild Fomes Fomentarius for Biomediation of One Pot Synthesis of Titanium Oxide and Silver Nanoparticles for Antibacterial and Anticancer Application. Biomo¬lecules, 10. https://doi.org/10.3390/biom10040622

R.Kavitha, S.Monikandon, D.Kesavan, A.Sankar (2017) Evidence for homogeneous adsorption of samanea saman extract inhibitor on steel surface, Int. J. Chem. Sci., 15(2): 120.

https://doi.org/10.37273/chesci.cs205310539

S.Monikandon, S.Poongothai, N. Ravisankar, (2024) Biogenic Iron Oxide Nanoparticles As Inhibitor for Corrosion of TMT Rod in Marine Envir-onment, Rasayan J. Chem., 17(2), 688- 695, http://doi.org/10.31788/RJC.2024.1728789

S.Sathiyanarayanan, C.Marikkannu N.Palaniswamy (2005) Corrosion inhibition effect of tetramines for mild steel in 1M HCl. Appl. Surf. Sci. 241 (3-4) pp 477-484. https://doi.org/10.1016/j.apsusc.2004.07.050

B.Latha, K.Kavitha,S.Rajendran,(2024)Inhibition of corrosion of mild steel in simulated oil well waterby aqueous extract of Hibiscus rosa-sinensisflower Zastita Materijala 65 (1)86-96. https://doi.org/10.62638/ZasMat1005

T. Velmurugan, A. Divya Sebasthi, S. Thangavel. (2024). Estimation of Primary and Secondary Metabolites and In Vitro Free Radical Scavenging Activities with Ficus tsjahela Burm.F. Crude Extracts in Natural Product Experiments in Drug Discovery, Ed.Karuppusamy Arunachalam, Xuefei Yang, Sreeja Puthanpura Sasidharan.

Downloads

Published

13-11-2024

Issue

Section

Scientific paper