Role of nanomaterials in modern agriculture

Authors

DOI:

https://doi.org/10.62638/ZasMat1098

Keywords:

Agriculture, nanofertilizers, nanobiosensors, nanopesticides, nanoformulations, nanomaterials

Abstract

Agriculture is a foundation of several emerging countries, and it is one of the most economically significant drivers. Farmers, consumers, and the environment are all at risk as a result of the increased usage of mineral fertilizers and harmful pesticides. Over the last few years, substantial research into the application of Nanotechnology to boost agricultural productivity has been undertaken. Nanoparticles (NPs) have been discovered to be beneficial as nanopesticides, nanobiosensor, nanofertilizers, and nanoremediation in agrifood production. Nutrients, pesticides, fungicides, and herbicides are compacted with a variety of NPs to facilitate the progressive release of fertilisers and pesticides, resulting in exact dose accessibility to plants. Nanofertilizers improve nutrient utilization, reduce nutrient deficiencies, reduce soil toxicity, and lessen the negative consequences of overdosing, all while reducing treatment frequency. Nanoformulations are used in agriculture to boost germination of seed, reduce nutrient losses in fertilization, reduce the amount of pesticides dispersed, aid water and nutrient management, and. This review also discusses various challenges and concerns about pesticide product development, formulation, and toxicity for ecologically friendly and sustainable agriculture.

 

References

V.Mohanraj, Y.Chen (2006) Nanoparticles-a review. Tropical Journal of Pharmaceutical Research, 5(1), 561-573.

https://doi.org/10.4314/tjpr.v5i1.14634.

T.Singh, S.Shukla, P.Kumar, V.Wahla, V.K. Bajpai, I.A. Rather (2017) Application of nanotechnology in food science: perception and overview. Frontiers in Microbiology, 8, 1501-1512. https://doi.org/10.3389/fmicb.2017.01501.

R.L. Manjunatha, D. Naik, K. V. Usharani (2019) Nanotechnology application in agriculture: A review. Journal of Pharmacognosy and Phytochemistry, 8(3), 1073-1083.

N. Dasgupta, S. Ranjan, A.R. Chakraborty, C. Ramalingam, R. Shanker, A. Kumar (2016) Nano agriculture and water quality management. Nanoscience in Food and Agriculture, Springer, 1, 1-42, https://doi.org/10.1007/978-3-319-39303-2_1.

A.Haleem, M.Javaid, R.P.Singh, S.Rab, R.Suman (2023) Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70-77. https://doi.org/10.1016/j.glohj.2023.02.008.

J. Kuzma, P. VerHage (2006) Nanotechnology in agriculture and food production: anticipated applications. Project on emerging nanotechnolo-gies

E. Corradini, M. De Moura, L. Mattos (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polymer Letters, 4(8), 324-329.

https/doi.org/ 10.3144/expresspolymlett.2010.64.

O. Sadik, A. Zhou, S. Kikandi, N. Du, Q. Wang, K. Varner (2009) Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. Journal of Environmental Monitoring, 11(10), 1782-1800,

https://doi.org/10.1039/B912860C.

H.C. Sharma, K.K. Sharma, N. Seetharama, J.H. Crouch (2003). The utility and management of transgenic plants with Bacillus thuringiensis genes for protection from pests. Journal of New Seeds, 5(1), 53-76,https://doi.org/10.1300/J153v05n01_04.

X. He, H. Deng, H..M.. Hwang (2019). The current application of nanotechnology in food and agriculture. Journal Of Food And Drug Analysis, 27(1), 1-21, https://doi.org/10.1016/j.jfda.2018.12.002

G.N.G. Saritha, T. Anju, A. Kumar (2022) Nanotechnology-Big impact: How nanotechnology is changing the future of ag-riculture? Journal of Agriculture and Food Research, 10, 100457,

https://doi.org/10.1016/j.jafr.2022.100457.

M. Sharon, A.K. Choudhary, R. Kumar (2010) Nanotechnology in agricultural diseases and food safety. Journal of Phytology, 2(4).

B. Predicala (2009) Nanotechnology: potential for agriculture. Prairie Swine Centre Inc, University of Saskatchewan, Saskatoon, SK, 123-134.

C.D. Ferreira, I.L. Nunes (2019) Oil nanoencap-sulation: development, application, and incorporation into the food market. Nanoscale Research Letters, 14, 1-13,

https://doi.org/10.1186/s11671-018-2829-2.

M.A. Hahn, A.K. Singh, P. Sharma, S.C. Brown, B.M. Moudgil (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Analytical and Bioanalytical Chemistry, 399, 3-27,

https://doi.org/10.1007/s00216-010-4207-5.

A. Gloskovskii, D. Valdaitsev, L. Viduta, S. Nepijko, G. Schönhense (2010) Investigation of the local electron emission from current-carrying silver nanoparticle films by an emission electron microscope. Thin Solid Films, 518(14), 4030-4034, https://doi.org/10.1016/j.tsf.2010.01.021.

S. Dwivedi, Q. Saquib, A.A. Al-Khedhairy, J. Musarrat. (2016) Understanding the role of nanomaterials in agriculture. Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications, 271-288,

https://doi.org/10.1007/978-81-322-2644-4_17.

E. Gaffet (2011) Nanomatériaux: Une revue des définitions, des applications et des effets sur la santé. Comment implémenter un développement sûr. Comptes Rendus Physique, 12(7), 648-658, https://doi.org/10.1016/j.crhy.2011.06.002.

D. Vollath. (2013). Nanomaterials: an introduction to synthesis, properties and applications. John Wiley & Sons,978-3-527-67186-1

M. Jaiswal, R. Dudhe, P. Sharma (2014) Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech ,5(2),123-127.

https://doi: 10.1007/s13205-014-0214-0.

D.J. McClements, J. Rao (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition, 51(4), 285-330,

https://doi.org/10.1080/10408398.2011.559558.

J. Jampilek, J. Kos, K. Kralova (2019) Potential of nanomaterial applications in dietary supplements and foods for special medical purposes. Nanomaterials, 9(2), 296-304.

https://doi.org/10.3390/nano9020296.

N.H. Che Marzuki, R.A. Wahab, M. Abdul Hamid (2019) An overview of nanoemulsion: concepts of development and cosmeceutical applications. Bio¬technology & Biotechnological Equipment, 33(1), 779-797.

https://doi.org/10.1080/13102818.2019.1620124

M.A. Salem, S.M. Ezzat (2019) Nanoemulsions in food industry. Some New Aspects Of Colloidal Systems in Foods, 2, 238-267,

http://dx.doi.org/10.5772/intechopen.79447.

S.M. Jafari (2017) Nanoencapsulation technologies for the food and nutraceutical industries. Academic Press.

V. Suganya, V. Anuradha. (2017) Microencapsu-lation and nanoencapsulation: a review. Int. J. Pharm. Clin. Res., 9(3), 233-239

https://doi.org/10.25258/ijpcr.v9i3.8324

Y. Kawashima (2001). Nanoparticulate systems for improved drug delivery. Adv. Drug Del. Rev., 47, 39-54.

M.R. Mozafari, J. Flanagan, L. Matia‐Merino, A. Awati, A. Omri, Z.E. Suntres, H. Singh (2006) Recent trends in the lipid‐based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture, 86(13), 2038-2045, https://doi.org/10.1002/jsfa.2576.

C.F. Chau, S. H. Wu, G. C. Yen (2007) The development of regulations for food nanotechno-logy. Trends in Food Science & Technology, 18(5), 269-280, https://doi.org/10.1016/j.tifs.2007.01.007.

F. Himmelweit (2017) The collected papers of paul ehrlich: In four volumes including a complete bibliography. Elsevier. 9780080090542.

K. Tsuji. (2001) Microencapsulation of pesticides and their improved handling safety. Journal of Mcroencapsulation, 18(2), 137-147, https://doi.org/ 10.1080/026520401750063856.

P. Christou, D.E. McCabe, W.F. Swain (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiology, 87(3), 671-674, https://doi.org/10.1104/pp.87.3.671.

F. Torney, B.G. Trewyn, V.S.-Y. Lin, K. Wang (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature nanotechnology, 2(5), 295-300, https://doi.org/10. 1038/nnano.2007.108.

P.S. Vijayakumar, O.U. Abhilash, B.M. Khan, B.L. Prasad (2010) Nanogold‐loaded sharp‐edged carbon bullets as plant‐gene carriers. Advanced Functional Materials, 20(15), 2416-2423, https://doi.org/10.1002/adfm.200901883.

M.S. Johnson, S. Sajeev, R.S. Nair (2021) Role of Nanosensors in agriculture. In 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE) (pp. 58-63). IEEE

https://doi.org/10.1109/ICCIKE51210.2021.9410709

J. Lu, M. Bowles (2013) How will nanotechnology affect agricultural supply chains? International Food and Agribusiness Management Review, 16(2), 21-42

http://dx.doi.org/10.22004/ag.econ.148580.

S. Agrawal, P. Rathore (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci,. 3(3), 43-55.

M.A. Augustin, P. Sanguansri. (2009) Nanostru-ctured materials in the food industry. Advances in Food and Nutrition Research, 58, 183-213

https://doi.org/10.1016/S1043-4526(09)58005-9.

R. Prasad, V. Kumar, K.S. Prasad (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), 705-713,

https://doi.org/10.5897/AJBX2013.13554.

E. Mastronardi, P. Tsae, X. Zhang, C. Monreal, M.C. DeRosa (2015) Strategic role of nanotechno-logy in fertilizers: potential and limitations. Nanotechnologies in Food and Agriculture, 25-67, https://doi.org/10.1007/978-3-319-14024-7_2

G. Singh, H. Rattanpal (2014) Use of nanotechnology in horticulture: a review. Int. J. Agric. Sci. Vet. Med, 2(1): p. 34-42.

S. Pradhan, D.R. Mailapalli (2017) Interaction of engineered nanoparticles with the agri-environment, Journal of Agricultural and Food Chemistry.65(38) (2017) 8279-8294,

https://doi.org/10.1021/acs.jafc.7b02528.

H. El-Ramady, N. Abdalla, T. Alshaal, A. El-Henawy, M. Elmahrouk, Y. Bayoumi, T. Shalaby, M. Amer, S. Shehata, M. Fári (2018) Plant nano-nutrition: perspectives and challenges, Nanotec-hnology, food security and water treatment, Springer, 129-161

https://doi.org/10.1007/978-3-319-70166-0_4.

T.P. Yadav, R.M. Yadav, D.P. Singh (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience and Nanotechnology, 2(3), 22-48, https//doi.org/10.5923/j.nn.20120203.01.

T. Kalra, P.C. Tomar, K. Arora (2020) Micronutrient encapsulation using nanotechnology: nanofertili-zers. Plant Arch, 20(2), 1748-1753.

S.D. Ebbs, S.J. Bradfield, P. Kumar, J.C. White, C. Musante, X. Ma. (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environmental Science: Nano, 3(1), 114-126, https://doi.org/10.1039/C5EN00161G.

N. Odzak, D. Kistler, R. Behra, L. Sigg (2014) Dissolution of metal and metal oxide nanoparticles under natural freshwater conditions. Environmental Chemistry, 12(2), 138-148

https://doi.org/10.1071/EN14049.

G.V. Lowry, K.B. Gregory, S.C. Apte, J.R. Lead (2012) Transformations of nanomaterials in the environment. ACS Publications

https://doi.org/10.1021/es300839e.

J.C. White, J. Gardea-Torresdey (2018) Achieving food security through the very small. Nature Nanotechnology, 13(8), 627-629

https://doi.org/10.1038/s41565-018-0223-y.

M.L. López-Moreno, C. Cassé, S.N. Correa-Torres (2018) Engineered NanoMaterials interactions with living plants: Benefits, hazards and reg-ulatory policies. Current Opinion in Environmental Science & Health, 6, 36-41

https://doi.org/10.1016/j.coesh.2018.07.013.

Y.K. Mohanta, D. Nayak, K. Biswas, S.K. Singdevsachan, E.F. Abd_Allah, A. Hashem, A.A. Alqarawi, D. Yadav, T.K. Mohanta (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules, 23(3), 655,

https://doi.org/10.3390/molecules23030655.

V.L.R. Pullagurala, I.O. Adisa, S. Rawat, S. Kalagara, J.A. Hernandez-Viezcas, J.R. Peralta-Videa, J.L. Gardea-Torresdey. (2018) ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiology and Biochemistry, 132, 120-127

https://doi.org/10.1016/j.plaphy.2018.08.037.

J.H. Priester, Y. Ge, R.E. Mielke, A.M. Horst, S.C. Moritz, K. Espinosa, J. Gelb, S.L. Walker, R.M. Nisbet, Y.-J. An (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences, 109(37) , E2451-E2456,

https://doi.org/10.1073/pnas.1205431109.

M.A. Iqbal (2029) Nano-fertilizers for sustainable crop production under changing climate: a global perspective. Sustainable crop production, 8 ,1-13, http://dx.doi.org/10.5772/intechopen.89089

M. Bernela, R. Rani, P. Malik, T.K. Mukherjee. (2021) Nanofertilizers: Applications and Future Prospects, Nanotechnology: Principles and Applications. Routledge, 289-332

D. Lin, B. Xing (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environmental pollution,150, 243-250, https://doi.org/10.1016/j.envpol.2007.01.016.

V. Shah, I. Belozerova ( 2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, and Soil Pollution, 197(1), 143-148

https://doi.org/10.1007/s11270-008-9797-6.

W.M. Lee, Y.J. An, H. Yoon, H.S. Kweon, Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water‐insoluble nanoparticles. Environmental Toxicology and Chemistry: An International Journal, 27(9), 1915-1921

https://doi.org/10.1897/07-481.1.

D. Stampoulis, S.K. Sinha, J.C. White. (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24) ,9473-9479,

https://doi.org/10.1021/es901695c.

R. Barrena, E. Casals, J. Colón, X. Font, A. Sánchez, V. Puntes (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere, 75(7) , 850-857,

https://doi.org/10.1016/j.chemosphere.2009.01.078

Y.S. El‐Temsah, E.J. Joner. (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27(1), 42-49.

C.O. Dimkpa, J.E. McLean, N. Martineau, D.W. Britt, R. Haverkamp, A.J. Anderson. (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environmental Science & Technology , 47(2), 1082-1090.

M. Rouhani, M. Samih, S. Kalantari (2013) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F.(Col.: Bruchidae).

A. El-Helaly, H. El-Bendary, A. Abdel-Wahab, M. El-Sheikh, S. Elnagar (2016) The silica-nano particles treatment of squash foliage and survival and development of Spodopteralittoralis (Bosid.) larvae, Pest Control, 5,6.

M. Ziaee, Z. Ganji (2016) Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum Jacquelin du Val. Journal of Plant Protection Research ,56(3).

L. Gan, W. Xu, M. Jiang, B. He, M. Su. (2010) A study on the inhibitory activities of nano-silver to Xanthomonas campestris pv. campestris. Acta Agriculturae Universitatis Jiangxiensis, 32(3) ,493-497.

K. Qian, T. Shi, T. Tang, S. Zhang, X. Liu, Y. Cao (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchimica Acta, 173(1), 51-57. https://doi.org/10.1007/s00604-010-0523-x.

Y.-C. Seo, J.-S. Cho, H.-Y. Jeong, T.-B. Yim, K.-S. Cho, T.-W. Lee, M.-H. Jeong, G.-H. Lee, S.-I. Kim, W.-B. Yoon (2011) Enhancement of antifungal activity of anthracnose in pepper by nanopaticles of thiamine di-lauryl sulfate. Korean Journal of Medicinal Crop Science, 19(3), 198-204, https://doi.org/10.7783/KJMCS.2011.19.3.198.

N. Chookhongkha, T. Sopondilok, S. Photchanachai (2012) Effect of chitosan and chitosan nanoparticles on fungal growth and chilli seed quality, International Conference on Postharvest Pest and Disease Management in Exporting Horticultural Crops, 973, 231-237

https://doi.org/10.17660/ActaHortic.2013.973.32.

K.K. Mondal, C. Mani (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Annals of Microbiology, 62(2) ,889-893.

https://doi.org/10.1007/s13213-011-0382-7.

M.L. Paret, G.E. Vallad, D.R. Averett, J.B. Jones, S.M. Olson (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology, 103(3) , 228-236, https://doi.org/10.1094/PHYTO-08-12-0183-R.

K. Giannousi, G. Sarafidis, S. Mourdikoudis, A. Pantazaki, C. Dendrinou-Samara (2014) Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast Saccharomyces cerevisiae and DNA interaction. Inorganic Chemistry, 53(18), 9657-9666, https://doi.org/10.1021/ic501143z.

I. Ocsoy, M.L. Paret, M.A. Ocsoy, S. Kunwar, T. Chen, M. You, W. Tan (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibac-terial against Xanthomonas perforans,.Acs Nan , 7(10), 8972-8980,

https://doi.org/10.1021/nn4034794.

M. Chaud, E.B. Souto, A. Zielinska, P. Severino, F. Batain, J. Oliveira-Junior, T. Alves (2021) Nanopesticides in agriculture: Benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics, 9(6), 131, https://doi.org/10.3390/toxics9060131.

H. Chhipa, P. Joshi (2016) Nanofertilisers, nano-pesticides and nanosensors in agriculture. Nano-science in Food and Agriculture, Springer, 247-282

https://doi.org/10.1007/978-3-319-39303-2_9.

R. Nair, S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida, D.S. Kumar (2010) Nanoparticulate material delivery to plants. Plant science, 179(3), 154-163.

K.B. Holt, A.J. Bard, Interaction of silver (I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry, 44(39), 13214-13223, https://doi.org/10.1021/bi0508542.

C.N. Lok, C.M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P.K.H. Tam, J. F. Chiu, C.M. Che (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5(4) , 916-924.

https://doi.org/10.1021/pr0504079.

S.J. Klaine, P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry: An International Journal, 27(9) ,1825-1851,https://doi.org/10.1897/08-090.1.

E. Karimi, E. Mohseni Fard (2017) Nanomaterial effects on soil microorganisms. Nanoscience and plant–soil systems,Springer, 137-200

https://doi.org/10.1007/978-3-319-46835-8_5

W. Yang, C. Shen, Q. Ji, H. An, J. Wang, Q. Liu, Z. Zhang (2009) Food storage material silver nano-particles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 20(8), 085102,

https://doi.org/10.1088/0957-4484/20/8/085102

J. J. Yin, J. Liu, M. Ehrenshaft, J.E. Roberts, P.P. Fu, R.P. Mason, B. Zhao (2012) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes—generation of reactive oxygen species and cell damage. Toxicology and applied pharmacology, 263(1), 81-88.

https://doi.org/10.1016/j.taap.2012.06.001.

P.P. Fu, Q. Xia, H.-M. Hwang, P.C. Ray, H. Yu (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1) , 64-75.

https://doi.org/10.1016/j.jfda.2014.01.005

L. Gonzalez, D. Lison, M. Kirsch-Volders. (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology, 2(4), 252-273

https://doi.org/10.1080/17435390802464986.

C. Blaise, F. Gagné, J. Ferard, P. Eullaffroy (2008) Ecotoxicity of selected nano‐materials to aquatic organisms. Environmental Toxicology: An International Journal, 23(5), 591-598.

https://doi.org/10.1002/tox.20402.

M. Valko, C. Rhodes, J. Moncol, M. Izakovic, M. Mazur (2006) Free radicals, metals and antioxi-dants in oxidative stress-induced cancer. Chemico-biological interactions, 160(1), 1-40.

https://doi.org/ 10.1016/j.cbi.2005.12.009.

D. Vara, G. Pula (2014) Reactive oxygen species: physiological roles in the regulation of vascular cells. Current Molecular Medicine, 14(9), 1103-1125.

T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano., 2(10), 2121-2134.

https://doi.org/10.1021/nn800511k.

J.A. Duro, C. Lauk, T. Kastner, K.H. Erb, H. Haberl (2020) Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis, Global Environmental Change, 64, 102124.

https://doi.org/10.1016/j.gloenvcha.2020.102124.

A.F. McCalla (2001) Challenges to world agriculture in the 21st century, UPDATE. Agriculture and Resource Economics, 4(3),1-2.

M.W. Aktar, D. Sengupta, A. Chowdhury (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology, 2(1), 1. https://doi.org/10.2478/v10102-009-0001-7.

R. Prasad, M. Kumar, V. Kumar (2017) Nano-technology: an agricultural paradigm, Springer.

https://doi.org/10.1007/978-981-10-4573-8.

B. Ruttkay-Nedecky, O. Krystofova, L. Nejdl, V. Adam (2017) Nanoparticles based on essential metals and their phytotoxicity. Journal of Nanobiotechnology, 15(1), 1-19.

https://doi.org/10.1186/s12951-017-0268-3.

M.A. Axelos, M. Van de Voorde (2017) Nanotechnology in agriculture and food science, John Wiley & Sons.

S.C. Mali, S. Raj, R.Trivedi (2020) Nanotechnology a novel approach to enhance crop productivity. Biochemistry and Biophysics Reports, 24 (2020) 100821, https://doi.org/10.1016/j.bbrep.2020.100821.

E.A. Worrall, A. Hamid, K.T. Mody, N. Mitter, H.R. Pappu (2018) Nanotechnology for plant disease management. Agronomy, 8(12), 285.

https://doi.org/10.3390/agronomy8120285.

S. Tripathi, S. Sarkar (2015) Influence of water soluble carbon dots on the growth of wheat plant. Applied Nanoscience, 5(5), 609-616.

https://doi.org/10.1007/s13204-014-0355-9.

M.M. Sufian, J.Z.K. Khattak, S. Yousaf, M.S. Rana (2017) Safety issues associated with the use of nanoparticles in human body. Photodiagnosis and Photodynamic Therapy, 19,67-72.

https://doi.org/10.1016/j.pdpdt.2017.05.012.

S. Sonwani, S. Madaan, J. Arora, S. Suryanarayan, D. Rangra, N. Mongia, T. Vats, P. Saxena (2021) Inhalation exposure to atmospheric nanoparticles and its associated impacts on human health: A review. Frontiers in Sustainable Cities 3, 690444. https://doi.org/10.3389/frsc.2021.690444.

L. Xuan, Z. Ju, M. Skonieczna, P.K. Zhou, R. Huang (2023) Nanoparticles‐induced potential toxicity on human health: applications, toxicity mechanisms, and evaluation models. MedComm, 4(4) e327, https://doi.org/10.1002/mco2.327.

A.A. Aljabali, M.A. Obeid, R.M. Bashatwah, Á. Serrano-Aroca, V. Mishra, Y. Mishra, M. El-Tanani, A. Hromić-Jahjefendić, D.N. Kapoor, R. Goyal, G.A. Naikoo, M.M. Tambuwala. (2023) Nanomate-rials and Their Impact on the Immune System. International Journal of Molecular Sciences, 24(3)

https://doi.org/10.3390/ijms24032008.

S. Zha, H. Liu, H. Li, H. Li, K.L. Wong, A.H. All (2024) Functionalized nanomaterials capable of crossing the blood–brain barrier. ACS Nano,18(3), 1820-1845, https://doi.org/10.1021/acsnano.3c10674

Downloads

Published

09-10-2024

Issue

Section

Scientific paper