Inhibitory Properties of the Boiling Extracts from Fagus Sylvatica Purpurea Fallen Leaves on the Corrosion of Mild Steel in Acidic Environments

Autori

DOI:

https://doi.org/10.62638/ZasMat999

Ključne reči:

Fagus Sylvatica Purpurea, purple beech, boiling extracts, acid medium corrosion inhibition, stainless steel, gravimetric study, electrochemical study, electrochemical impedance spectroscopy, Langmuir adsorption isotherm

Apstrakt

The inhibitory ability of boiling extracts from the fallen leaves of Fagus sylvatica purpurea on the corrosion of mild steel EN Fe37-3FN in 0.5 M hydrochloric acid and 0.5 M sulphuric acid media was investigated using gravimetric, electrochemical, and EIS methods. The results show that the addition of 100 mg/L of Fagus sylvatica purpurea fallen leaf extract reduces the corrosion rate by 20–25%, while the addition of 1 g/L or more reduces it by 65–70%. The adsorption of the extract components on the steel surface follows the Langmuir adsorption model, and the nature of the adsorption is physical. The Fagus sylvatica purpurea fallen leaf extract demonstrates potential as an environmentally friendly substance for reducing steel corrosion rates in acidic environments.

Reference

R.Haldhar, S.C.Kim, E.Berdimurodov, D.K.Verma, C.M.Hussain (2021) Corrosion inhibitors: industrial applications and commercialization, book Sustainable corrosion inhibitors II: Synthesis, design, and practical applications, ACS Symposium Series, Vol. 1404, American Chemical Society, p. 219-235. https://doi.org/10.1021/bk-2021-1404.ch010.

N.Vaszilcsin, A.Kellenberger, M.L.Dan, D.A.Duca, V.L.Ordodi (2023) Efficiency of Expired Drugs Used as Corrosion Inhibitors: A Review, Materials, 16(16), 5555. https://doi.org/10.3390/ma16165555.

A.Thakur, S.Sharma, R.Ganjoo, H.Assad, A.Kumar (2022) Anti-corrosive potential of the sustainable corrosion inhibitors based on biomass waste: a review on preceding and perspective research, book Journal of Physics: Conference Series, Vol. 2267, No. 1, IOP Publishing, p. 012079. https://doi.org/10.1088/1742-6596/2267/1/012079.

S.Marzorati, L.Verotta, S.P.Trasatti (2018) Green corrosion inhibitors from natural sources and biomass wastes, Molecules, 24(1), 48. https://doi.org/10.3390/molecules24010048.

M.Ž.Nonić, D.M.Skočajić, M.N.Grbić, M.T.Šijačić-Nikolić (2017) Variability of Quantitative and Qualitative Characteristics of Fagus sylvatica ‘Purpurea’ Clones Produced by Grafting, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(2), 400-407. https://doi.org/10.15835/nbha45210896.

T.Hofmann, E.Nebehaj, É.Stefanovits-Bányai, L.Albert (2015) Antioxidant capacity and total phenol content of beech (Fagus sylvatica L.) bark extracts, Industrial Crops and Products, 77, 375-381. https://doi.org/10.1016/j.indcrop.2015.09.008.

L.Pirvu, A.Grigore, C.Bubueanu, E.Draghici (2013) Comparative analytical and antioxidant activity studies on a series of Fagus sylvatica L. leaves extracts, JPC-Journal of Planar Chromatography-Modern TLC, 26(3), 237-242. https://doi.org/10.1556/jpc.26.2013.3.6.

M.Formato, F.Scharenberg, S.Pacifico, C.Zidorn (2022) Seasonal variations in phenolic natural products in Fagus sylvatica (European beech) leaves, Phytochemistry, 203, 113385. https://doi.org/10.1016/j.phytochem.2022.113385.

E.Cadahía, B.Fernández de Simón, I.Aranda, M.Sanz, D.Sánchez‐Gómez, E.Pinto (2015) Non‐targeted metabolomic profile of Fagus sylvatica L. leaves using liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry. Phytochemical Analysis, 26(2), 171-182. https://doi.org/10.1002/pca.2549.

N.Bhardwaj, P.Sharma V.Kumar (2021) Phytochemicals as steel corrosion inhibitor: an insight into mechanism, Corrosion Reviews, 39(1), 27-41. https://doi.org/10.1515/corrrev-2020-0046.

A.Kadhim A.A.Al-Amiery R.Alazawi M.K.S.Al-Ghezi R.H.Abass (2021) Corrosion inhibitors. A review, International Journal of Corrosion and Scale Inhibition, 10(1), 54-67. https://doi.org/10.17675/2305-6894-2021-10-1-3.

V.I.Vorobyova, M.I.Skiba, A.S.Shakun, S.V. Nahirniak (2019) Relationship between the inhibition and antioxidant properties of the plant and biomass wastes extracts-A Review, International Journal of Corrosion and Scale Inhibition, 8(2), 150-178. https://doi.org/10.17675/2305-6894-2019-8-2-1.

A.Cojocaru, I.Maior, D.I.Vaireanu, C.Lingvay, I. Lingvay, S.Caprarescu, G.E.Badea (2010) Ethanol extract of Fagus Sylvatica leaves as an eco-friendly inhibitor for carbon steel corrosion in acidic solutions, Journal of Sustainable Energy, 1(3), 64-71.

J.Tafel (1905) Über die Polarisation bei kathodischer Wasserstoffentwicklung, Zeitschrift für Physikaliche Chemie, 50(1), 641-712. https://doi.org/10.1515/zpch-1905-5043.

F.Mansfeld (1973) Tafel slopes and corrosion rates from polarization resistance measurements, Corrosion, 29(10), 397-402. https://doi.org/10.5006/0010-9312-29.10.397.

M.Stern (1958) A method for determining corrosion rates from linear polarization data, Corrosion, 14(9), 60-64. https://doi.org/10.5006/0010-9312-14.9.60.

M.Stern, A.L.Geary (1957) Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves, Journal of Electrochemical Society, 104(1), 56-63. https://doi.org/10.1149/1.2428496.

X.Z.Yuan, C.Song, H.Wang, J.Zhang (2010) EIS equivalent circuits, book Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications, Berlin, Springer, p. 139-192. https://doi.org/10.1007/978-1-84882-846-9_4.

J.E.B.Randles (1947) Kinetics of rapid electrode reactions, Discussions of the Faraday Society, 1, 11-19. https://doi.org/10.1039/DF9470100011.

A.S.Bondarenko G.A.Ragoisha (2005) Inverse problem in potentiodynamic electrochemical impedance spectroscopy, book A.L.Pomerantsev. Progress in Chemometrics Research, New York, Nova Science Publishers, p. 89–102, https://www.abc.chemistry.bsu.by/vi/analyser.

A.Lasia (2014) Electrochemical Impedance Spectroscopy and its Applications, Springer, New York. https://doi.org/10.1007/978-1-4614-8933-7.

I.Langmuir (1918) The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 40(9), 1361-1403. https://doi.org/10.1021/ja02242a004.

R.Adrain (1808) Research concerning the probabilities of the errors which happen in making observations, &c, The Analyst; Or Mathematical Museum, 1(4), 93-109.

S.-I.Pyun (2021) Strategies of metal corrosion protection, ChemTexts, 7(1), 2. https://doi.org/10.1007/s40828-020-00121-y.

X.Xie, R.Holze (2018) Experimental methods in corrosion research, ChemTexts, 4(1), 5-13. https://doi.org/10.1007/s40828-018-0057-0.

A.Kokalj (2022) Corrosion inhibitors: physisorbed or chemisorbed? Corrosion Science, 196, 109939. https://doi.org/10.1016/j.corsci.2021.109939.

A.B.Kičenko, V.M.Kušnarenko (2005) O nekorrektnosti točnyh značenij ocenki zaŝitnogo dejstviâ ingibitorov korrozii, Praktika protivokorro¬zionnoj zaŝity, 4(38), 17-22.

T.J.Harvey, F.C.Walsh, A.H.Nahlé (2018) A review of inhibitors for the corrosion of transition metals in aqueous acids, Journal of Molecular Liquids, 266, 160-175. https://doi.org/10.1016/j.molliq.2018.06.014.

M.Goyal et al (2018) Organic corrosion inhibitors for industrial cleaning of ferrous and non-ferrous metals in acidic solutions: A review, J. of Molecular Liquids, 256, 565-573. https://doi.org/10.1016/j.molliq.2018.02.045.

##submission.downloads##

Objavljeno

2024-12-18

Broj časopisa

Rubrika

Scientific paper