Otpornost na koroziju mekog čelika uronjenog u simulirani rastvor betonskih pora u prisustvu natrijum-kalijum tartarata
DOI:
https://doi.org/10.5937/zasmat2302170NKljučne reči:
natrijum-kalijum tartarat, otpornost na koroziju, meki čelik, simulirani rastvor pora betona, elektrohemijska ispitivanja, spektri elektrohemijske impedanseApstrakt
Otpornost mekog čelika na koroziju u simuliranom rastvoru pora betona (SCPS) u odsustvu i prisustvu natrijum-kalijum tartarata (SPT) je ispitana tehnikom polarizacije i spektrom impedanse naizmenične struje. Studija polarizacije otkriva da sistem natrijum-kalijum tartrata funkcioniše kao anodni tip inhibitora. Spektri impedanse naizmenične struje otkrivaju da se na površini metala formira zaštitni film. Kada se kao armatura koristi meki čelik, natrijum-kalijum tartarat se može mešati sa betonom. Tada e meki čelik biti zaštićen od korozije. Zaštitni film se sastoji od kompleksa ferotartarata formiranog na metalnoj površini. U prisustvu natrijum-kalijum tartarata, otpor linearne polarizacije raste sa 226 Ohmcm2 na 455 Ohmcm2 , struja korozije se smanjuje sa 1,901k10-4 A/cm2 na 1,096 k10-4A/cm2 , otpor prenosa naelektrisanja (Rt) raste sa 49 Ohmcm2 na 77 Ohmcm2 , impedansa se povećava sa 1, na 2, , fazni ugao se povećava sa 33,92° na 35,31° i vrednost kapacitivnosti dvostrukog sloja (Cdl) se smanjuje sa 1,040k10-7 F/cm2 na 0,662 k10-7 F/cm2 . Potencijal korozije se pomera sa -973 mV/SCE na - 6 mV/SCE. Ovo potvrđuje da inhibitorni sistem funkcioniše kao anodni tip inhibitora koji kontroliše anodnu reakciju pretežno. Ova formulacija može na i primenu u tehnologiji betona. Ovo se može koristiti u izgradnji mostova i betonskih konstrukcija.Reference
Al-Sharabi, A., Bouiti, K., Bouhlal, F., Labjar, N., Benabdellah, Amine G., Dahrouch, A., Hermouch, L., Kaya, S., El, I.B., El Mahi, M., Lotfi, E.M., El, O.B., El Hajjaji, S. (2022) Anti-corrosive properties of Catha Edulis leaves extract on C38 steel in 1 M HCl media. Experimental and theoretical study.International Journal of Corrosion and Scale Inhibition, 11(3): 956-984
Ekeke, I.C., Efe, S., Nwadire, F.C. (2022) Plant materials as green corrosion inhibitors for select iron alloys: A review.Zaštita materijala, 63(2): 183-202
https://doi.org/10.5937/zasmat2202183E
El-Housseiny, S., Abdel-Gaber, A.M., Rahal, H.T., Beqai, F.T. (2022) Eco-friendly corrosion inhibitor for mild steel in acidic media.International Journal of Corrosion and Scale Inhibition, 11(4): 1516-1538
Jin, Z., Xiong, C., Zhao, T., Yu, Y., Wang, P. (2022) Passivation and depassivation properties of Cr-Mo alloyed corrosion-resistant steel in simulated concrete pore solution.Cement and Concrete Composites, 126: 104375-104375
https://doi.org/10.1016/j.cemconcomp.2021.104375
Jin, Z., Zhao, X., Du, Y., Yang, S., Wang, D., Zhao, T., Bai, Y. (2022) Comprehensive properties of passive film formed in simulated pore solution of alkali-activated concrete.Construction and Building Materials, 319: 126142-126142
https://doi.org/10.1016/j.conbuildmat.2021.126142
Kasapović, D., Korać, F., Bikić, F. (2022) Testing the effectiveness of raspberry flower extract as an inhibitor of copper's corrosion in 3% NaCl.Zaštita materijala, vol. 63, br. 2, str. 115-121
https://doi.org/10.5937/zasmat2202115K
Kim, C., Goldsberry, R., Karayan, A.I., Hassan, M., Castaneda, H. (2021) Electrochemical evaluation of epoxy-coated-rebar containing pH-responsive nanocapsules in simulated carbonated concrete pore solution.Progress in Organic Coatings, 161: 106549-106549
https://doi.org/10.1016/j.porgcoat.2021.106549
Laaroussi, H., Aouniti, A., Hafez, B., Mokhtari, O., Sheikh, R.A., Hamdani, I., Rahhou, I., Loukili, E.H., Belbachir, C., Hammouti, B., Elmsellem, H. (2022) Argan leaves aqueous extract's antioxidant activity and mild steel corrosion inhibition ability. International Journal of Corrosion and Scale Inhibition, 11(4): 1539-1556
Liu, G., Zhu, H., Zhang, Y., Yang, L., Liu, C. (2022) Corrosion behavior of steel subjected to different corrosive ions in simulated concrete pore solution.Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 50(2), 413-419
Ming, J., Zhou, X., Zuo, H., Jiang, L., Zou, Y., Shi, J. (2022) Effects of stray current and silicate ions on the electrochemical behavior of high-strength prestressing steel in simulated concrete pore solutions.Corrosion Science, 197: 110083-110083
https://doi.org/10.1016/j.corsci.2022.110083
Naderi, R., Bautista, A., Velasco, F., Soleimani, M., Pourfath, M. (2022) Use of licorice plant extract for controlling corrosion of steel rebar in chloridepolluted concrete pore solution.Journal of Molecular Liquids, 346: 117856-117856
https://doi.org/10.1016/j.molliq.2021.117856
Nilavan, A., Sathiyaprabha, B., Anu, R.S.V., Philo, S.S.J.J., Sindhuja, A.J., Rakshana, S., Princy, A.M., Rajendran, S.S. (2022) Influence of a showcase Polish coating on corrosion resistance of mild steel in simulated concrete pore solution.Oriental Journal of Physical Sciences, 7(1): 16-25
https://doi.org/10.13005/OJPS07.01.03
Praveena, J.J.M., Gowri, S., Nethravathi, G., Varsha, V.D., Vieyana, A.C., Rajendran, S.S., Rajendran, D., Sasilatha, T., Amalraj, A.J. (2021) Inhibition of corrosion of SS 18/8 alloy is sea water by Thiourea-Zn2+ system.Zaštita materijala, vol. 62, br. 3, str. 191-203
https://doi.org/10.5937/zasmat2103191J
Rajendran, D., Sasilatha, T., Amala, D.H.M.S., Santhammal, R.S., Lačnjevac, Č., Singh, G. (2022) Deep learning-based underwater metal object detection using input image data and corrosion protection of mild steel used in underwater study: A case study: Part B: Corrosion protection of mild steel used in underwater study.Zaštita materijala, vol. 63, br. 1, str. 15-22
https://doi.org/10.5937/zasmat2201015R
Rajendran, D., Sasilatha, T., Santhammal, R.S., Al-Hashem, A., Lačnjevac, Č., Singh, G. (2022) Inhibition of corrosion of mild steel hull plates immersed in natural sea water by sandalwood oil extract of some natural products.Zaštita materijala, vol. 63, br. 1, str. 23-36
https://doi.org/10.5937/zasmat2201023R
Sajid, H.U., Kiran, R., Bajwa, D.S. (2022) Soy-protein and corn-derived polyol based coatings for corrosion mitigation in reinforced concrete.Construction and Building Materials, 319: 126056-126056
https://doi.org/10.1016/j.conbuildmat.2021.126056
Shevtsov, D.S., Zartsyn, I.D., Komarova, E.S., Zhikhareva, D.A., Avetisyan, I.V., Shikhaliev, K.S., Potapov, M.A., Kozaderov, O.A. (2022) Evaluation of the efficiency of the master life CI 222 organic corrosion inhibitor additive for the protection of steel reinforcement bars in concrete.Int. J. Corros. Scale Inhib, 11(4): 1583-1592
Song, Z., Liu, Y., Jiang, L., Chu, H., Guob, M. (2021) Using ultrasonic wave to trigger microcapsule inhibitor against chloride-induced corrosion of carbon steel in simulated concrete pore solution.Construction and Building Materials, 311: 125331-125331
https://doi.org/10.1016/j.conbuildmat.2021.125331
Sreelekshmi, S., Kumar, M.A. (2021) Effect of reduced graphene oxide nanoparticles as anticorrosion material on a mild steel substrate.J. Phy. Conference Series, 2070(1): 012192-012192
https://doi.org/10.1088/1742-6596/2070/1/012192
Tsygankova, L.E., Vigdorowitsch, M. (2022) Anti-corrosion effectiveness of superhydrophobic coatings on metals: Overview.International Journal of Corrosion and Scale Inhibition, 11(3): 889-940
##submission.downloads##
Objavljeno
Broj časopisa
Rubrika
Licenca
Sva prava zadržana (c) 2023 CC BY 4.0 by Authors
Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.