Biogoriva kao izazov održivog razvoja
DOI:
https://doi.org/10.5937/zasmat2303291PKljučne reči:
biogoriva, biomasa, bioenergija, održivost, energetska politikaApstrakt
Bioenergija, ili energija dobijena iz biomase, danas je prepoznata kao važna komponenta u mnogim energetskim scenarijima, kao sastavni dio različitih globalnih, regionalnih i nacionalnih politika i strategija. To je dovelo do intenziviranja istraživanja efikasnije proizvodnje biogoriva. U ovom radu se objašnjavaju prednosti, nedostaci i problemi vezani za proizvodnju biogoriva iz različitih vrsta sirovina. Navedeno je nekoliko primjera komercijaliziranih i demonstracionih postrojenja za proizvodnju biogoriva u različitim dijelovima svijeta. Za očekivati je da će, uz veću upotrebu savremenih rješenja za proizvodnju biogoriva, doprinos ovih izvora (bio)energije biti glavni dio buduće potrošnje energije iz obnovljivih izvora.Reference
Abdullah, B., Syed, M.S.A.F., Shokravi, Z., Ismail, S., Kassim, K.A., Mahmood, A.N., Aziz, M.M.A. (2019) Fourth generation biofuel: A review on risks and mitigation strategies.Renewable and Sustainable Energy Reviews, 107: 37-50
https://doi.org/10.1016/j.rser.2019.02.018
Alam, F., Mobin, S., Chowdhury, H. (2010) Third generation biofuel from algae.Procedia Engineering, 105, 763-768
https://doi.org/10.1016/j.proeng.2015.05.068
Alkcon Corporation (2021) Biopropane. http://www.alkcon.com/biopropane/, 25.04.2023
Bai, A., Popp, J., Pető, K., Szőke, I., Harangi-Rákos, M., Gabnai, Z. (2017) The significance of forests and algae in CO2 balance: A Hungarian case study.Sustainability, 9(5): 857-857
https://doi.org/10.3390/su9050857
Basu, P. (2010) Biomass gasification and pyrolysis: Practical design and theory. USA: Elsevier
Behera, S., Singh, R., Arora, R., Sharma, N.K., Shukla, M., Kumar, S. (2015) Scope of algae as third generation biofuels.Frontiers in bioengineering and biotechnology, 2, No-90
https://doi.org/10.3389/fbioe.2014.00090
Biofuels International (2021) The conversion of used cooking oils into biodiesel. https://biofuelsnews.com/news/the-conversion-of-used-cookingoils-into-biodiesel/, 25.04.2023
Björnsson, L., Pettersson, M., Börjesson, P., Ottosson, P., Gustavsson, C. (2021) Integrating bio-oil production from wood fuels to an existing heat and power plant: Evaluation of energy and greenhouse gas performance in a Swedish case study.Sustainable Energy Technologies and Assessments, 48: 101648-101648
https://doi.org/10.1016/j.seta.2021.101648
Carriquiry, M.A., Du, X., Timilsina, G.R. (2011) Second generation biofuels: Economics and policies.Energy Policy, 39(7): 4222-4234
https://doi.org/10.1016/j.enpol.2011.04.036
Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Eng, A.G., Lucht, W., Mapako, M., Cerutti, O.M., McIntyre, T., Minowa, T., Pingoud, K., Bain, R., Chiang, R. (2011) Chapter 2: Bioenergy. in: Renewable energy sources and climate change mitigation, Cambridge University Press, 209-332
https://doi.org/10.1017/CBO9781139151153.006
Conscious Travel Guide (2021) Chamber of Commerce Amsterdam. https://conscioustravelguide. com/important-global-sustainability-fairtrade-certifications, 20.04.2023
Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A.J., Spencer, N., Jouhara, H. (2017) Potential of pyrolysis processes in the waste management sector.Thermal Science and Engineering Progress, 3, 171-197
https://doi.org/10.1016/j.tsep.2017.06.003
Demirbas, A., Demirbas, M.F. (2010) Green energy and technology, algae energy: Algae as a new source of biodiesel. London: Springer, 139-157
https://doi.org/10.1007/978-1-84996-050-2_6
Douvartzides, S.L., Charisiou, N.D., Papageridis, K.N., Goula, M.A. (2019) Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines.Energies, 12(5), 809-815
https://doi.org/10.3390/en12050809
Dragone, G., Fernandes, B., Vicente, A.A., Teixeira, J.A. (2010) Third generation biofuels from microalgae. in: Current research, technology and education topics in applied microbiology and microbial biotechnology, Badajoz, Spain: Formatex Research Center, 1355-1366
Dutta, K., Daverey, A., Lin, J. (2014) Evolution retrospective for alternative fuels: First to fourth generation.Renewable Energy, 69: 114-122
https://doi.org/10.1016/j.renene.2014.02.044
EERE (U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy) (2021) Hydrogen Production: Thermochemical Water Splitting. https://www.energy.gov/eere/fuelcells/ hydrogen-production-thermochemical-watersplitting, 25.04.2023
ETIP (European Technology and Innovation Platform) (2021) HVO/HEFA Overview. https://www. etipbioenergy.eu/value-chains/products-enduse/products/hvo-hefa, 25.04.2023
European Commission (2009) Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and.Official Journal of the European Communities L, Text with EEA relevance (http://data.europa.eu/eli/dir/ 2009/30/oj, 25.04.2023, 140, European Commission, Brussels
European Commission (2020) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the committee of the regions. https://eurlex.europa.eu/resource.html?uri=cellar:c006a13f-0e04-11eb-bc07-01aa75ed71a1.0001.02/DOC_1&format=PDF, 20.04.2023
European Commission (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. https://eur-lex.europa.eu/ eli/dir/2009/28/2015-10-05, 25.04.2023
Gregg, J.S., Bolwig, S., Hansen, T., Solér, O., Amer-Allam, S.B., Viladecans, J.P., Klitkou, A., Fevolden, A. (2017) Value chain structures that define European cellulosic ethanol production.Sustainability, 9(1): 118-118
https://doi.org/10.3390/su9010118
Gvero, P., Papuga, S., Mujanic, I., Vaskovic, S. (2016) Pyrolysis as a key process in biomass combustion and thermochemical conversion.Thermal Science, 20(4), 1209-1222
https://doi.org/10.2298/TSCI151129154G
Gvero, P., Mujanić, I., Papuga, S., Vasković, S., Anatunović, R. (2017) Review of synthetic fuels and new materials production based on pyrolysis technologies. in: Advances in applications of industrial biomaterials, Germany: Springer International Publishing, pp 65-85
https://doi.org/10.1007/978-3-319-62767-0_4
Hobson, C. (2018) Renewable Methanol Report. Methanol Institute, https://www.methanol.org/wpcontent/uploads/2019/01/MethanolReport.pdf, 25.04.2023
IEA, ETSAP (2010) Energy demand technologies data. https://iea-etsap.org/index.php/energy-technologydata/energy-demand-technologies-data, 24.05.2023
International Energy Association (2011) Technology roadmap biofuels for transport. https://www.iea.org/reports/technology-roadmapbiofuels-for-transport, 20.04.2023
International Energy Association (2021) Renewables 2021: Biofuels. https://www.iea.org/ reports/renewables-2021/biofuels?mode=transport& region=World&publication=2021&flow=Consumptio n&product=Ethanol, 25.04.2023
IRENA (2018) Bioenergy from Finnish forests: Sustainable, efficient, modern use of wood. https://www.irena.org/-/media/Files/IRENA/Agency/ Publication/2018/Mar/IRENA_Bioenergy_from_Finni sh_forests_2018.pdf, 25.04.2023
Jacquet, N., Haubruge, E., Richel, A. (2015) Production of biofuels and biomolecules in the framework of circular economy: A regional case study.Waste Management & Research, 33(12), 1121-1126
https://doi.org/10.1177/0734242X15613154
Kaltschmitt, M. (2017) Biomass as Renewable Source of Energy: Possible Conversion Routes. in: Encyclopedia of Sustainability Science and Technology, New York: Springer, p.1-38
https://doi.org/10.1007/978-1-4939-2493-6_244-3
https://doi.org/10.1007/978-1-4939-2493-6_991-1
Karlsson, H. (2014) Biorefinery systems for energy and feed production: Greenhouse gas performance and energy balances. Uppsala: Swedish University of Agricultural Sciences, Licentiate Thesis
Khattar, J.S., Singh, Y., Parveen, S., Singh, D.P. (2016) Microalgal biofuels: Flexible bioenergies for sustainable development. in: Biofuels, Routledge Handbooks Online, pp 331-362
Lugani, Y., Sooch, B.S., Kumar, S. (2019) Biochemical strategies for enhanced biofuel production. in: Prospects of renewable bioprocessing in future energy systems, Springer, p. 51-87
https://doi.org/10.1007/978-3-030-14463-0_2
Luque, R., Speight, J.G. (2015) Gasification and synthetic liquid fuel production: An overview. in: Gasification for synthetic fuel production, USA: Elsevier, pp. 3-28
https://doi.org/10.1016/B978-0-85709-802-3.00001-1
Millán, E., Mota, N., Guil-López, R., Pawelec, B., García, F.J.L., Navarro, R.M. (2020) Direct synthesis of dimethyl ether from syngas on bifunctional hybrid catalysts based on supported H3PW12O40 and Cu-ZnO(Al): Effect of heteropolyacid loading on hybrid structure and catalytic activity.Catalysts, 10(9): 1071-1071
https://doi.org/10.3390/catal10091071
Milledge, J.J., Smith, S., Dyer, P.W., Harvey, P. (2014) Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass.Energies, 7(11), 7194-7222
https://doi.org/10.3390/en7117194
Moscovici, D., Reed, A. (2017) Comparing wine sustainability certifications around the world: History, status, and opportunity.Journal of Wine Research, 29(1): 1-25
https://doi.org/10.1080/09571264.2018.1433138
Niggli, U., Plagge, J., Reese, S., Fertl, T., Schmid, O., Brändli, U., Bärtschi, D., Pöpsel, G., Hermanowski, R., Hohenester, H., Grabmann, G. (2015) Towards modern sustainable agriculture with organic farming as the leading model: A discussion document on Organic 3.0. Bioaktuell. https://www.bioaktuell. ch/fileadmin/documents/ba/Bildung/Organic-Three-Zero-2015-12-07.pdf, 25.04.2023
Nizami, A.-s., Mohanakrishna, G., Mishra, U., Pant, D. (2016) Trends and sustainability criteria for liquid biofuels. in: Biofuels, Routledge Handbooks Online, p. 59-88
https://doi.org/10.1201/9781315370743-5
OECD, FAO (2022) Agricultural Outlook 2022-2031. https://www.oecd.org/publications/oecdfao-agricultural-outlook-19991142.htm, 20.04.2023
Papadokonstantakis, S., Johnsson, F. (2017) Report on definition of parameters for defining biomass conversion technologies. http://www.advancefuel. eu/contents/reports/d31-biomass-conversiontechnologies-definitions-final.pdf, 25.04.2023
Papuga, S. (2022) Malozagađujuće tehnologije i čistija proizvodanja. Banja Luka: Univerzitet u Banjoj Luci, knjiga
Papuga, S., Gvero, P., Vukic, L. (2016) Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor.Thermal Science, 20(2): 731-741
https://doi.org/10.2298/TSCI141113154P
Papuga, S., Djurdjevic, M., Ciccioli, A., Vecchio, C.S. (2023) Catalytic pyrolysis of plastic waste and molecular symmetry effects: A review.Symmetry, 15(1): 38-38
https://doi.org/10.3390/sym15010038
Papuga, S., Musić, I., Gvero, P., Vukić, L. (2013) Preliminary research of waste biomass and plastic pyrolysis process.Contemporary Materials, 4(1): 76-83
https://doi.org/10.7251/COMEN1301076P
Preradović, M., Papuga, S. (2021) Biogoriva treće generacije - procesi uzgajanja i dobijanja goriva iz mikroalgi (Third generation biofuels: Cultivation methods and technologies for processing of microalgal biofuels).Zaštita materijala, vol. 62, br. 4, str. 249-261
https://doi.org/10.5937/zasmat2104249P
RocketReach (2022) Tri-State Biodiesel Information. https://rocketreach.co/tri-state-biodieselprofile_b5caed60f42e140c, 25.04.2023
Saratale, G.D., Saratale, R.G., Banu, J., Chang, J. (2019) Biohydrogen production from renewable biomass resources. in: Biohydrogen, Elsevier, Second edition, p.247-277
https://doi.org/10.1016/B978-0-444-64203-5.00010-1
Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., Hankamer, B. (2008) Second generation biofuels: High-efficiency microalgae for biodiesel production.BioEnergy Research, 1(1): 20-43
https://doi.org/10.1007/s12155-008-9008-8
Seay, J.R., You, F. (2016) Biomass supply, demand, and markets. in: Biomass supply chains for bioenergy and biorefining, Woodhead Publishing, 85-100
https://doi.org/10.1016/B978-1-78242-366-9.00004-6
SeQuential (2020) The Biodiesel Process: Making Fuel from Waste. https://choosesq.com/blog/thebiodiesel-process-making-fuel-from-waste/, 25.04.2023
Sheldon, D. (2017) Methanol Production: A Technical History.Johnson Matthey Technol. Rev, 61(3), 172-182
https://doi.org/10.1595/205651317X695622
Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., Awasthi, M.K. (2019) Biofuel Production From Biomass. in: Current Developments in Biotechnology and Bioengineering, Elsevier, 79-92
https://doi.org/10.1016/B978-0-444-64083-3.00005-1
Speight, J.G. (2015) Synthetic liquid fuel production from gasification. in: Gasification for synthetic fuel production, USA: Elsevier, p. 147-174
https://doi.org/10.1016/B978-0-85709-802-3.00007-2
Stratas Advisors (2021) Gradual increase of bio-oil production expected as commercialization of fast pyrolysis gains momentum. https://stratasadvisors. com/Insights/2021/11242021-Bio-oil-Production, 20.04.2023
Total Energies (2021) BioTfuel: Developing Second-Generation Biofuels. https://www.totalenergies. com/energy-expertise/projects/bioenergies/biotfuelconverting-plant-wastes-into-fuel , 25.04.2023
Tursi, A. (2019) A review on biomass: Importance, chemistry, classification, and conversion.Biofuel Research Journal, 6(2), 962-979
https://doi.org/10.18331/BRJ2019.6.2.3
Vakili, R., Pourazadi, E., Setoodeh, P., Eslamloueyan, R., Rahimpour, M.R. (2011) Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor.Applied Energy, 88(4): 1211-1223
https://doi.org/10.1016/j.apenergy.2010.10.023
Wallace, S. (2010) What about bio-oil?.Canadian Biomass Magazine, https://www.canadianbiomassmagazine.ca/what-about-bio-oil-1779/,20.04.2023
WindEurope (2021) How renewable hydrogen will help Europe's decarbonisation. https://windeurope. org/newsroom/news/how-renewable-hydrogen-willhelp-europes-decarbonisation/,25.04.2023
Woolcock, P.J., Brown, R.C. (2013) A review of cleaning technologies for biomass-derived syngas.Biomass and Bioenergy, 52, 54-84
https://doi.org/10.1016/j.biombioe.2013.02.036
Worldwatch Institute (2007) Biofuels for Transport: Global Potential and Implications for Sustainable Energy and Agriculture. London: Earthscan
Yusoff, M.N.A.M., Zulkifli, N.W.M., Masum, B.M., Masjuki, H.H. (2015) Feasibility of bioethanol and biobutanol as transportation fuel in spark-ignition engine: A review.RSC Advances, 5(121): 100184-100211
https://doi.org/10.1039/C5RA12735A
Zhao, B., Su, Y. (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: A review.Renewable and Sustainable Energy Reviews, 31: 121-132
https://doi.org/10.1016/j.rser.2013.11.054
Zinoviev, S., Arumugam, S., Miertus, S. (2007) Background paperon biofuel production technologies. International Centre for Science and High Technology (ISC)
##submission.downloads##
Objavljeno
Broj časopisa
Rubrika
Licenca
Sva prava zadržana (c) 2023 CC BY 4.0 by Authors
Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.