Zaštita ugljeničnog čelika od korozije superhidrofobnim premazom

Autori

  • Olga Alekhina Derzhavin State University, Tambov, Russian Federation Autor
  • Natalia Shel Tambov State Technical University, Tambov, Russian Federation Autor

DOI:

https://doi.org/10.5937/zasmat2303283T

Ključne reči:

ugljenični čelik, korozija, zaštita, superhidrofobni premaz, kontaktni ugao, amonijak, ugljen-dioksid (IV), potenciodinamička polarizacija

Apstrakt

U atmosferskim uslovima pri 100% vlažnosti na površini metala se formira površinski fazni film vlage u kome se rastvore i skoro potpuno hidriraju vazdušne mikro nečisto e NH3, CO2, H2S itd. U atmosferskim uslovima pri 100% vlažnosti, na površini metala se formira površinski fazni film vlage u kome se nalaze mikro nečisto e vazduha NH3, CO2, H2S itd., koje se rastvore i skoro potpuno hidratizuju sa stvaranjem NH4OH i kiselina H2CO3 i H2S. Metoda potenciodinamičke polarizacije je korišćena za proučavanje zaštitne efikasnosti superhidrofobne prevlake na ugljeničnom čeliku u modelnom mediju na bazi NaCl koji simulira zasićenje filma površinske vlage ugljen-dioksidom (IV) i/ili amonijakom u atmosferskim uslovima. Superhidrofobni premaz je dobijen na osnovu laserskog teksturiranja čelične površine pra ene hidrofobizacijom fluoroksisilanom (ugao vlaženja 165±2°, ugao kotrljanja 3±1°). Razmatran je uticaj trajanja izlaganja elektroda u rastvoru (0,25 - 168 h) na kinetiku elektrodnih procesa, brzinu korozije čelika i zaštitnu efikasnost superhidrofobnog premaza. Pokazalo se da prisustvo amonijum hidroksida ili amonijumkarbonata u rastvoru povećava zaštitnu efikasnost premaza u poređenju sa čisto hloridnim medijumom koji simulira oštre atmosferske uslove.

Reference

Boinovich, L., Emelyanenko, A. (2012) A wetting experiment as a tool to study the physicochemical processes accompanying the contact of hydrophobic and super-hydrophobic materials with aqueous media.Adv. Colloid Interface Sci, 179, 133-141

https://doi.org/10.1016/j.cis.2012.06.010

Boinovich, L.B., Emelyanenko, A.M. (2008) Hydrophobic materials and coatings: Principles of creation, properties, application.Uspek hikhimii, 77(7), 619-638

https://doi.org/10.1070/RC2008v077n07ABEH003775

Boinovich, L.B., Emelyanenko, K.A., Emelyanenko, A.M. (2018) Laser tailoring the surface chemistry and morphology for wear, scale and corrosion resistant superhydrophobic coatings.Langmuir, 34(24), 7059-7066

https://doi.org/10.1021/acs.langmuir.8b01317

Boinovich, L.B., Gnedenkov, S.V., Alpysbaeva, D.A., Egorkin, V.S., Emelyanenko, A.M., Sinebryukhov, S.L., Zaretskaya, A.K. (2012) Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers.Corros. Sci, 55, 238-245

https://doi.org/10.1016/j.corsci.2011.10.023

Hooda, A., Goyat, M.S., Pandey, J.K., Kumar, A., Gupta, R.A. (2020) A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings.Prog.Org.Coat, 142, 105557

https://doi.org/10.1016/j.porgcoat.2020.105557

Hu, C., Xie, X., Zheng, H., Qing, Y., Ren, K. (2020) Facile fabrication of superhydrophobic zinc coatings with corrosion resistance by electrodeposition process.New J. Chem, 44, 8890-8901

https://doi.org/10.1039/D0NJ00561D

Hua, Z., Yang, J., Wang, T., Liu, G., Zhang, G. (2013) Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity.Langmuir, 29, 10307-10312

https://doi.org/10.1021/la402584v

Ou, J., Liu, M., Li, W., Xue, M., Li, C. (2012) Corrosion behavior of super-hydrophobic surfaces of Ni alloys in NaCl solutions.Appl. Surf. Sci, 258, 4724-4728

https://doi.org/10.1016/j.apsusc.2012.01.066

Tsygankova, L.E., Vigdorowitsch, M. (2022) Anti-corrosion effectiveness of superhydrophobic coatings on metals: Overview.International Journal of Corrosion and Scale Inhibition, 11(3): 889-940

https://doi.org/10.17675/2305-6894-2022-11-3-2

##submission.downloads##

Objavljeno

2023-09-15

Broj časopisa

Rubrika

Articles