Određivanje otpornosti na dejstvo kavitacije uzoraka pirofilita

Autori

  • Dragan Radulović Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade, Serbia Autor
  • Marko Pavlović Kontrol Inspekt-Beograd, Beograd Autor
  • Marina Dojčinović University of Belgrade, Faculty of Technology and Metallurgy, Serbia Autor

DOI:

https://doi.org/10.5937/zasmat2102126A

Ključne reči:

pirofilit, kavitaciona otpornost, gubitak mase, morfologija oštećenja, analiza slike

Apstrakt

U radu je ispitivana otpornost pod dejstvom kavitacije uzoraka sinterovanog pirofilita. Polazni uzorak pirofilita iz ležišta Parsović-BiH mleven je u vibracionom mlinu na granulaciju 20mm, presovan je i sinterovan na temperaturama (ºC): 1000; 1100; 1200. Za procenu kavitacione otpornosti praćena je promena mase uzorka u funkciji vremena delovanja kavitacije. Primenjena je ultrazvučna vibraciona metoda sa stacionarnim uzorkom prema standardu ASTM G32. Izračunate su kavitacione brzine za sve uzorke, kao osnovni pokazatelj otpornosti materijala pod dejstvom kavitacije. Promena morfologije površine uzorka sa vremenom ispitivanja praćena je primenom skenirajuće elektronske mikroskopije. Na osnovu vrednosti kavitacione brzine i analize morfologije oštećenja površine određena je kavitaciona otpornost ispitivanih uzoraka na bazi pirofilita. Dobijeni rezultati ukazuju da uzorci sinterovanog pirofilita imaju zadovoljavajuću otpornost na dejstvo kavitacije i mogu se primeniti u uslovima manjih kavitacionih opterećenja.

Reference

(2010) ASTM G32-10: Standard test method for cavitation erosion using vibratory apparatus. West Conshohocken: ASTM International

Andrić, Lj., Terzić, A., Aćimović-Pavlović, Z., Pavlović, Lj., Petrov, M. (2013) Comparative analiysis of process paramiters of talc mechanical activation in centrifugal and attrition mill.Phisicochemical Probl.Miner.Process, 50(2): 433-452

Andrić, L., Radulović, D., Pavlović, M., Petrov, M., Stojanović, J. (2020) Possibility of applying pyrophylite as filler in refractory coatings.Zaštita materijala, vol. 61, br. 3, str. 210-219

https://doi.org/10.5937/zasmat2003210A

Dojčinović, M. (2013) Razaranje materijala pod dejstvom kavitacije. Beograd: TMF, Monografija; str. 99

Dojčinović, M. (2013) Roughness measurement as an alternative method in evaluation of cavitation resistance of steel.Hemijska industrija, vol. 67, br. 2, str. 323-330

https://doi.org/10.2298/HEMIND120320064D

Dular, M., Stoffel, B., Širok, B. (2006) Development of a cavitation erosion model.Wear, 261(5-6): 642-655

https://doi.org/10.1016/j.wear.2006.01.020

Dular, M., Osterman, A. (2008) Pit clustering in cavitation erosion.Wear, 265(5-6): 811-820

https://doi.org/10.1016/j.wear.2008.01.005

Feng, C., Shuyun, J. (2014) Cavitation erosion of diamond-like carbon coating on stainless steel.Applied Surface Science, 292: 16-26

https://doi.org/10.1016/j.apsusc.2013.11.044

Franc, J.P., Michel, J.M. (2004) Fundamentals of cavitation. in: Series Fluid Mechanics and Its Applications, New York-Boston-Dordrecht: Kluwer Academic Publishers, p.306-323

https://doi.org/10.1007/1-4020-2233-6

García-Atance, F.G., Hadfield, M., Vieillard, C., Sekulic, J. (2009) Early stage cavitation erosion within ceramics: An experimental investigation.Ceramics International, 35(8): 3301-3312

https://doi.org/10.1016/j.ceramint.2009.05.020

Jasionowski, R., Pędzich, Z., Zasada, D., Przetakiewicz, W. (2015) Cavitation erosion resistance of FeAl intermetallic alloys and Al2O3-based ceramics.Archives of Metallurgy and Materials, 60(2): 671-675

https://doi.org/10.1515/amm-2015-0191

Laguna-Camacho, J.R., Lewis, R., Vite-Torres, M., Méndez-Méndez, J.V. (2013) A study of cavitation erosion on engineering materials.Wear, 301(1-2): 467-476

https://doi.org/10.1016/j.wear.2012.11.026

Mahadi, M.I., Palaniandy, S. (2010) Mechanochemical effect of dolomitic talc during fine grinding process in mortar grinder.International Journal of Mineral Processing, 94(3-4): 172-179

https://doi.org/10.1016/j.minpro.2010.02.008

Mlkvik, M., Olšiak, R., Knížat, B., Jedelský, J. (2014) Character of the cavitation erosion on selected metallic materials.EPJ Web of Conferences, 67: 02076

https://doi.org/10.1051/epjconf/20146702076

Mukhopadhyay, T.K., Ghatak, S., Maiti, H.S. (2009) Effect of pyrophyllite on the mullitization in triaxial porcelain system.Ceramics International, 35(4): 1493-1500

https://doi.org/10.1016/j.ceramint.2008.08.002

Niebuhr, D. (2007) Cavitation erosion behavior of ceramics in aqueous solutions.Wear, 263(1-6): 295-300

https://doi.org/10.1016/j.wear.2006.12.040

Pavlović, M., Dojčinović, M., Andrić, Lj., Radulović, D., Čeganjac, Z. (2019) Determination of cavitation resistance of sintered basalt samples. in: 51th International October Conference on Mining and Metallurgy, Proceedings, Bor, Serbia, 215-218

Pavlović, M., Dojčinović, M., Prokić-Cvetković, R., Andrić, Lj., Čeganjac, Z., Trumbulović, Lj. (2019) Cavitation wear of basalt glass ceramic.Materials, 12(9): 2-11

https://doi.org/10.3390/ma12091552

Pavlović, M., Dojčinović, M., Prokić-Cvetković, R., Andrić, Lj., Sarvan, M. (2019) Kontrola kvaliteta vatrostalnih premaza primenom ultrazvučne vibracione metode sa stacionarnim uzorkom. in: Quality 2019, Proceedings, Neum, 137-142

Pavlović, M., Dojčinović, M., Prokić-Cvetković, R., Andrić, L. (2019) The mechanisms of cavitation erosion of raw and sintered basalt.Science of Sintering, 51(4): 409-419

https://doi.org/10.2298/SOS1904409P

Qiu, N., Wang, L., Wu, S., Likhachev, D.S. (2015) Research on cavitation erosion and wear resistance performance of coatings.Engineering Failure Analysis, 55: 208-223

https://doi.org/10.1016/j.engfailanal.2015.06.003

Richman, R.H., McNaughton, W.P. (1990) Correlation of cavitation erosion behavior with mechanical properties of metals.Wear, 140(1): 63-82

https://doi.org/10.1016/0043-1648(90)90122-Q

Ristić, M.M. (1993) Principi nauke o materijalima. Beograd: Srpska akademija nauka i umetnosti - Odeljenje tehničkih nauka, posebna izdanja, Knjiga 36

Sanchez-Soto, P.J., Perez-Rodriguez, J.L. (1989) Thermal analysis of pyrophyllite transformations.Thermochimica Acta, 138(2): 267-276

https://doi.org/10.1016/0040-6031(89)87263-6

Terzić, A., Radulović, D., Pezo, M., Stojanović, J., Pezo, L., Radojević, Z., Andrić, L. (2020) Prediction model based on artificial neural network for pyrophyllite mechano-chemical activation as an integral step in production of cement binders.Construction and Building Materials, 258: 119721-119721

https://doi.org/10.1016/j.conbuildmat.2020.119721

Tomlinson, W.J., Matthews, S.J. (1994) Cavitation erosion of structural ceramics.Ceramics International, 20(3): 201-209

https://doi.org/10.1016/0272-8842(94)90040-X

Yekeler, M., Ulusoy, U., Hiçyılmaz, C. (2004) Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability.Powder Technology, 140(1-2): 68-78

https://doi.org/10.1016/j.powtec.2003.12.012

##submission.downloads##

Objavljeno

2021-06-15

Broj časopisa

Rubrika

Articles