Modeliranje GTL-koprodukcije energije kao sredstvo za optimizaciju GTL postrojenja
DOI:
https://doi.org/10.5937/zasmat2201089OKljučne reči:
gas-tečnost, električna energija, koproizvodnja, Fišer-Tropš, otpadna toplotaApstrakt
Tehnologije Gas-to-Likuids (GTL) imaju potencijal da pretvore povezane gasove iz baklje u premium transportne tečnosti, stvarajući tržište za inače nasukan resurs. Međutim, kapitalni troškovi GTL postrojenja su tokom godina ometali izbor projekta. Pogon za GTL je poboljšan optimizacijom postrojenja tako da se poveća njegova efikasnost i profitabilnost. Jedno takvo značajno poboljšanje u konfiguraciji GTL postrojenja je integracija jedinice za proizvodnju energije u GTL procesno postrojenje tako da se proizvodnja GTL tečnosti i proizvodnja električne energije mogu odvijati istovremeno u istom postrojenju. Ovaj metod koji se generalno naziva GTL-energetska koprodukcija će povećati ukupnu efikasnost i profitabilnost postojećeg procesa GTL postrojenja i predstaviti načine za ekonomičnu optimizaciju gubitka toplote kroz tokove nusproizvoda (tokove pare i dimnih gasova). Korišćenje tokova nusproizvoda će uzeti u obzir smanjenje termičke neefikasnosti u procesu GTL postrojenja. U ovom radu, dodatna jedinica je dodata konfiguraciji proizvodnog postrojenja od 863,3 m3/d GTL-a da bi se koristio tok pare nusproizvoda za proizvodnju električne energije. Ova dodatna jedinica električne energije proizvela je 10 MV električne energije povećavajući neto sadašnju vrijednost (NPV) postrojenja za 4,72%, dok je neto gotovinski povrat (NCR) povećan za 3,87%. Pored toga, vreme isplate je smanjeno za 2%. Koprodukcija GTL-Electriciti se pokazala kao sredstvo za optimizaciju GTL postrojenja, imajući sposobnost da donese više profita zbog smanjenih kapitalnih i operativnih troškova nego kada bi postrojenja radila odvojeno.Reference
(2019) GGFR: Global Gas Flaring Reduction Partnership.Mini-GTL technology bulletin, 6, 1-12
Adegoke, B. (2006) Utilizing the Heat Content of Gas-to-Liquids by-Product Streams for Commercial Power Generation. Texas A &M University, Master's degree thesis submitted to the school of Graduate studies
Adegoke, K., Barrufet, M., Ehlig-Economides, C. (2005) GTL Plus Power Generation: The Optimal Alternative for Natural Gas Exploitation in Nigeria. in: International Petroleum Technology Conference
https://doi.org/10.2523/10523-MS
Aliyu, A.S., Ramli, T.R., Saleh, A.S. (2013) Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications.Energy, 61: 354-367
https://doi.org/10.1016/j.energy.2013.09.011
Anju, S., Solomon, P.A., Aparna, K. (2016) Syngas production from regasified liquefied natural gas and its simulation using Aspen HYSYS.Journal of Natural Gas Science and Engineering, 30: 176-181
https://doi.org/10.1016/j.jngse.2016.02.013
Ekwueme, S.T., Izuwa, N.C., Obibuike, U.J., Kerunwa, A., Ohia, N.P., Odo, J.E., Obah, B.O. (2019) Economics of Gas-to-Liquids (GTL) Plants.Petroleum Science and Engineering, 3(2), 85-93
Eluagu, R.C., Anyadiegwu, C.I.C., Obah, B.O. (2018) Evaluation of Performance Optimization of Modular Gas Turbine System for Monetisation of Associated Stranded Gas in the Niger Delta.International Journal of Engineering Sciences & Research Technology, 6: 42-69
Holmen, R.E.A. (2015) Fischer-Tropsch Co-Catalysts-A Mini-Review.Catalysts, 5, 478-499
https://doi.org/10.3390/catal5020478
Izuwa, N.C., Obah, B., Ekwueme, S.T., Obibuike, U.J., Kerunwa, A., Ohia, N.P., Odo, J.E. (2019) Gas-to-Liquids (GTL) Plant Optimization Using Enhanced Synthesis Gas Reforming Technology.Petroleum Science and Engineering, 3(2): 94-102
Kerunwa, S., Ekwueme, S.T., Obibuike, U.J. (2020) Utilization of Stranded Associated Flare Gases for Electricity Generation in Situ Through Gas-to-Wire in the Niger Delta.International Journal of Oil, Gas and Coal Engineering, 8(1): 28-34
https://doi.org/10.11648/j.ogce.20200801.15
Knutsen, K.T. (2013) Modelling and optimization of a Gas-to-Liquid plant. Norwegian University of Science and Technology, Master's thesis submitted to the department of Chemical Engineering
Ogugbue, C.C., Chukwu, G.A., Khatanair, S. (2007) Economics of GTL Technology for Gas Utilization. in: SPE Hydrocarbon Economics and Evaluation Symposium, Dakar, Texas
https://doi.org/10.2523/107654-MS
Onwuka, E.I., Iledare, O.O., Echendu, J.C. (2016) Gas to Power in Nigeria: This Burden on Natural Gas. in: SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria
https://doi.org/10.2118/184336-MS
Panahi, M., Rafiee, A., Skogestad, S., Hillestad, M. (2012) A Natural Gas to Liquids Process Model for Optimal Operation.Norway: industrial and Engineering Chemistry Research, 51(1): 425-433
https://doi.org/10.1021/ie2014058
Saravanan, N.P., Vuuren, M.J.V. (2010) Process wastewater treatment and management in gas-toliquids industries. SPE-126526. in: SPE oil and gas India conference and exhibition, Mumbai, India
Srivatsan, J.S., Linke, P., Amani, M. (2009) Seawater Desalination Using Excess Heat From GTL Process. in: SPE annual technical conference and exhibition, Louisiana: SPE, SPE -124462-MS
https://doi.org/10.2118/124462-MS
U S.Doe (2015) Combined Heat and Power Technology. in: Factsheet Series
Vogel, A.P., van Dyk, B., Saib, A.M. (2016) GTL using efficient cobalt Fischer-Tropsch catalysts.Catalysis Today, 4, 408-419
https://doi.org/10.1016/j.cattod.2015.06.018
Walwynb, M.K.E.D.R. (2016) Success factors for the commercialisation of Gas-to-Liquids technology.South African Journal of Business Management, 47(3): 63-72
##submission.downloads##
Objavljeno
Broj časopisa
Rubrika
Licenca
Sva prava zadržana (c) 2022 CC BY 4.0 by Authors
Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.