Izračunavanje prave vrednosti kapaciteta dvojnog sloja iz konstantnog faznog elementa u impedansnim merenjima

Autori

  • Vladimir D. Jović University of Belgrade, Institute for Multidisciplinary Research, Serbia Autor

DOI:

https://doi.org/10.5937/zasmat2201050J

Ključne reči:

elektrohemijska impedansna spektroskopija, kapacitet dvojnog sloja, konstantni fazni element, rekacija izdvajanja vodonika

Apstrakt

Razmatrajući literature o elektrohemijskoj impedansnoj spektroskopiji (EIS) ustanovljeno je da za izračunavanje vrednosti kapaciteta dvojnog sloja (Cdl) iz konstantnog faznog elementa (CPE) postoje dve jednačine, jedna u kojoj figuriše otpor elektrolita (Rs) i druga u kojoj ovaj parametar ne figuriše. Izračunavanjem vrednosti Cdl za definisane parametre (Ydl, , Rs , Rct), u ovom radu je pokazano da se dobijaju drugačiji rezultati za Cdl primenom ovih jednačina. Takođe je konstatovano da je neprihvatljivo da oba parametra (Rct i Rs) na isti način zavise od vremenske konstante, odn. od parametra . Ispitivanjem reakcije izdvajanja vodonika na Ni mrežici u rastvoru 1 M KOH na 25 oC korišćenjem impedansnih merenja, pokazano je da su zavisnosti Cdl vs. E, dobijene korišćenjem pomenutih jednačina, različite. Da bi se izbegao ovaj problem predloženo je da se koristi jednačina u kojoj ne figuriše otpor elektrolita (Rs), jer uvodjenje Rs nema korektan fizički smisao.

Reference

Baril, G., Blanc, C., Keddam, M., Pebere, N. (2003) Local Electrochemical Impedance Spectroscopy Applied to the Corrosion Behavior of an AZ91 Magnesium Alloy.Journal of The Electrochemical Society, 150: B488-B493

https://doi.org/10.1149/1.1602080

Baril, G., Blanc, C., Pebere, N. (2001) AC Impedance Spectroscopy in Characterizing Time-Dependent Corrosion of AZ91 and AM50 Magnesium Alloys.J. Electrochem. Soc, 148: 489-496

https://doi.org/10.1149/1.1415722

Bayet, E., Huet, F., Keddam, M., Ogle, K., Takenouti, H. (1999) Local electrochemical impedance measurement: scanning vibrating electrode technique in ac mode.Electrochim. Acta, 44: 4117-4127

https://doi.org/10.1016/S0013-4686(99)00126-7

Brug, G.J., van den Eedem, A.L.G., Sluyters-Rechbach, M., Sluyters, J.H. (1984) The analysis of electrode impedances complicated by the presence of a constant phase element.J. Electroanal. Chem, 176: 275-295

https://doi.org/10.1016/S0022-0728(84)80324-1

Cole, K.S., Cole, R.H. (1941) Dispersion and absorption in dielectrics: 1. Alternating current characteristics.Journal of Chemical Physics, 9, str. 341-351

https://doi.org/10.1063/1.1750906

Conway, B.E., Tilak, B.V., Eley, I.D.D., Pines, H., Weisz, P.B., Eds (1992) Advances in Catalysis. San Diego, CA: Academic Press, Inc, 38

de Levie, R. (1967) Electrochemical response of porous and rough electrodes. in: P. Delahay [ed.] Advances in Electrochemistry and Electrochemical Engineering, New York: Wiley, VI: 329-395

Durbha, M., Orazem, M.E., Tribollet, B. (1999) A Mathematical Model for the Radially Dependent Impedance of a Rotating Disk Electrode.Journal of The Electrochemical Society, 146: 2199-2208

https://doi.org/10.1149/1.1391914

El-Aziz, A.M., Kibler, L.A., Kolb, D.M. (2002) The potentials of zero charge of Pd(111) and thin Pd overlayers on Au(111).Electrochemistry Communications, 4: 535-539

https://doi.org/10.1016/S1388-2481(02)00362-4

Garrigues, L., Pebere, N., Dabosi, F. (1996) An investigation of the corrosion inhibition of pure aluminum in neutral and acidic chloride solutions.Electrochimica Acta, 41: 1209-1215

https://doi.org/10.1016/0013-4686(95)00472-6

Gonzalo, G., Pebere, N., Tribollet, B., Vincent, V. (2009) Local and global electrochemical impedances applied to the corrosion behavior of an AZ91 magnesium alloy.Corr. Sci, 51: 1789-1794

https://doi.org/10.1016/j.corsci.2009.05.005

Gouy, M. (1910) Sur la constitution de la charge électrique à la surface d'UN électrolyte.Journal de Physique Théorique et Appliquée, 9: 457-468

https://doi.org/10.1051/jphystap:019100090045700

Hamelin, A. (1985) Double-layer properties at sp and sd metal single-crystal electrodes. in: Conway, B.E., White, R., Bockris, J.O'M. [ed.] Modern Aspects of Electrochemistry, New York: Plenum, 16: 1-98

Hitz, C., Lasia, A. (2001) Experimental study and modeling of impedance of the her on porous Ni electrodes.Journal of Electroanalytical Chemistry, 500: 213-222

https://doi.org/10.1016/S0022-0728(00)00317-X

Hsu, C.H., Mansfeld, F. (2001) Technical Note:Concerning the Conversion of the Constant Phase Element Parameter Y0into a Capacitance.Corrosion, 57: 747-748

https://doi.org/10.5006/1.3280607

Isaacs, H.S., Kendig, M.W. (1980) Determination of Surface Inhomogeneities Using a Scanning Probe Impedance Technique.Corrosion, 36: 269-274

https://doi.org/10.5006/0010-9312-36.6.269

Jorcin, J.B., Orazem, M.E., Pebere, N., Tribollet, B. (2006) CPE analysis by local electrochemical impedance spectroscopy.Electrochimica Acta, 51: 1473-1479

https://doi.org/10.1016/j.electacta.2005.02.128

Jović, V.D., Parsons, R., Jovic, B.M. (1992) Anion absorption on the (111) face of silver.Journal of Electroanalytical Chemistry, 339: 327-337

https://doi.org/10.1016/0022-0728(92)80461-C

Jović, V.D., Jović, B.M. (2003) EIS and differential capacitance measurements onto single crystal faces in different solutions. Part I: Ag(111) in 0.01MNaCl.Journal of Electroanalytical Chemistry, 541: 1-11

https://doi.org/10.1016/S0022-0728(02)01310-4

https://doi.org/10.1016/S0022-0728(02)01309-8

Jović, V.D. (2009) Differential Capacity of Bromide Anions Adsorption onto Ag(100) in the Absence, and onto Ag(poly) in the presence of NaClO4.Chem. Biochem. Eng. Q, 23: 1-12

Jović, V.D., Jović, B.M., Parsons, R. (1990) Acetate adsorption on the (111) oriented silver single crystal surface.Journal of Electroanalytical Chemistry, 290: 257-262

https://doi.org/10.1016/0022-0728(90)87435-M

K.Nisancioglu,, J.Newman (1974) The Short-Time Response of a Disk Electrode.Journal of The Electrochemical Society, 121: 523-523

https://doi.org/10.1149/1.2401850

Kim, C.H., Pyun, S.I., Kim, J.H. (2003) An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations.Electrochimica Acta, 48: 3455-3463

https://doi.org/10.1016/S0013-4686(03)00464-X

Lasia, A. (1999) Modern Aspects of Electrochemistry. New York: Kluwer Academic/Plenum Publishers, 143

Lasia, A. (1995) Impedance of porous electrodes.Journal of Electroanalytical Chemistry, 397: 27-33

https://doi.org/10.1016/0022-0728(95)04177-5

Newman, J.S. (1966) Current Distribution on a Rotating Disk below the Limiting Current.Journal of The Electrochemical Society, 113: 1235-1241

https://doi.org/10.1149/1.2423795

Newman, J.S. (1970) Frequency Dispersion in Capacity Measurements at a Disk Electrode.Journal of The Electrochemical Society, 117: 198-198

https://doi.org/10.1149/1.2407464

Nisancioglu, K. (1987) The Error in Polarization Resistance and Capacitance Measurements Resulting from Nonuniform Ohmic Potential Drop to Flush-Mounted Probes.Corrosion, 43: 258-265

https://doi.org/10.5006/1.3583146

Nisancioglu, K. (1990) ASTM STP 1056. Philadelphia, PA: American Society for Testing and Materials, 61

Nyikos, L., Pajkossy, T. (1985) Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes.Electrochimica Acta, 30: 1533-1540

https://doi.org/10.1016/0013-4686(85)80016-5

Orazem, M.E., Agarwal, P., Garcıa-Rubio, L.H. (1994) Critical issues associated with interpretation of impedance spectra.Journal of Electroanalytical Chemistry, 378: 51-62

https://doi.org/10.1016/0022-0728(94)87056-X

Orazem, M.E., Pebere, N., Tribollet, B., Shifler, I.D.A., Tsuru, T., Natishan, P.M., Ito, S., Eds (2004) Corrosion in Marine and Saltwater Environments. 14

P.W.Appel,, J.Newman (1977) Radially Dependent Corrective Warburg Problem for a Rotating Disk.Journal of The Electrochemical Society, 124: 1864-1868

https://doi.org/10.1149/1.2133177

Pajkossy, K.Z.T. (1998) Impedance of rough capacitive electrodes: the role of surface disorder.Journal of Electroanalytical Chemistry, 448: 139-142

https://doi.org/10.1016/S0022-0728(98)00025-4

Pajkossy, T., Kerner, Z. (2002) Measurement of adsorption rates of anions on Au(111) electrodes by impedance spectroscopy.Electrochimica Acta, 47: 2055-2063

https://doi.org/10.1016/S0013-4686(02)00073-7

Pajkossy, T., Kolb, D.M. (2007) Double layer capacitance of the platinum group metals in the double layer region.Electrochemistry Communications, 9: 1171-1174

https://doi.org/10.1016/j.elecom.2007.01.002

Pajkossy, T., Wandlowski, T., Kolb, D.M. (1996) Impedance aspects of anion adsorption on gold single crystal electrodes.Journal of Electroanalytical Chemistry, 414: 209-220

https://doi.org/10.1016/0022-0728(96)04700-6

https://doi.org/10.1016/S0022-0728(96)04700-6

Reeves, R. (1980) The Double Layer in the Absence of Specific Adsorption. in: Bockris, J.O'M. Conway B.E. and Yeager E. [ed.] Comprehensive Treatise of Electrochemistry, Plenum, New York and London: Springer US, 1: 83-134

https://doi.org/10.1007/978-1-4615-6684-7_3

Sapoval, B. (1995) Linear and non-linear behavior of fractal and irregular electrodes.Solid State Ionics, 75: 269-273

https://doi.org/10.1016/0167-2738(94)00171-N

Schiller, C.A., Strunz, W. (2001) The evaluation of experimental dielectric data of barrier coatings by means of different models.Electrochimica Acta, 46: 3619-3625

https://doi.org/10.1016/S0013-4686(01)00644-2

Slevogt, K.E. (1939) Dispersion und Absorption elektrischer Wellen in Alkoholen und wäßrigen Lösungen.Annalen der Physik, 36: 141-165

https://doi.org/10.1002/andp.19394280205

Song, H.K., Hwang, H.Y., Lee, K.H., Dao, L.H. (2000) The effect of pore size distribution on the frequency dispersion of porous electrodes.Electrochimica Acta, 45: 2241-2257

https://doi.org/10.1016/S0013-4686(99)00436-3

Valette, G., Hamelin, A. (1973) Structure et propriétés de la couche double électrochimique à l'interphase argent/solutions aqueuses de fluorure de sodium.Journal of Electroanalytical Chemistry, 45: 301-319

https://doi.org/10.1016/S0022-0728(73)80166-4

##submission.downloads##

Objavljeno

2022-03-15

Broj časopisa

Rubrika

Articles