Uticaj premaza na koroziju ploča trupa od mekog čelika u prirodnoj morskoj vodi
DOI:
https://doi.org/10.5937/zasmat2203353KKljučne reči:
premaz boje, inhibicija korozije, ploče trupa, meki čelik, rirodna morska voda, elektrohemijske studijeApstrakt
Otpornost na koroziju mekog čelika (koji se koristi za izradu ploča trupa u brodskoj industriji) morskoj vodi pre nanošenja boje (Nippon boja, vremenska veza unapred) i posle premaza boje je merena elektrohemijskim studijama kao sto su studija polarizacije i spektri impedanse naizmenične struje. Primećeno je da se nakon nanošenja boje povećava otpornost na koroziju polča trupa od mekog čelika. Studija polarizacije otkriva da nakon nanošenja boje, otpor linearne polarizacije raste a struja korozije opada. Spektri impedance naizmenične struje otkriva da se prisustvu bojenog premaza vrednost otpora prenosa naelektrisanja povećava, vrednost impedanse povećava, fazni ugao raste i vrednost dvoslojne kapacitivnosti opada.Reference
Ahmad, A.H., Kubba, R.M., Hussain, A.S.M. (2019) Synthesis, identification, theoretical and experimental studies for carbon steel corrosion inhibition in seawater for new urea and thiourea derivatives linkage to 5-Nitro
Ali, I.H., Idris, A.M., Suliman, M.H.A. (2019) Evaluation of leaf and bark extracts of Acacia tortilis as corrosion inhibitors for mild steel in seawater: Experimental and studies.Int. J. Electrochem. Sci, 14(7), 6404-6419
https://doi.org/10.20964/2019.07.10
Al-Nami, S.Y., Fouda, A.S. (2020) Corrosion inhibition effect and adsorption activities of methanolic myrrh extract for cu in 2M HNO3.Int. J. Electrochemical Sci, 15(2): 1187-1205
https://doi.org/10.20964/2020.02.23
Arockiaraj, M.J.V.D., Kirubavathy, S.J., Al-Hashem, A., Santhammal, R.S., Joany, R.M., Lačnjevac, Č. (2021) Inhibition of corrosion of mild steel by an alcoholic extract of a seaweed Sargassum muticum.Zaštita materijala, vol. 62, br. 4, str. 304-315
https://doi.org/10.5937/zasmat2104304J
Belghiti, M.E., Ouadi, Y.E., Echihi, S., Bentiss, F., Dafali, A. (2020) Anticorrosive properties of two 3,5disubstituted-4-amino-1,2,4-triazole derivatives on copper in hydrochloric acid environment: Ac impedance, thermodynamic and computational investigations. Surfaces and Interfaces, 21, 100692
https://doi.org/10.1016/j.surfin.2020.100692
Ch, A., Mary, J., Jeyasundari, V.R., Banu, S.S., Kumaran, A.P., Regis (2020) Corrosion behavior of orthodontic wires in artificial saliva with presence of beverage. in: Nanotechnology in the Beverage Industry: Fundamentals and Applications, 471-504
https://doi.org/10.1016/B978-0-12-819941-1.00016-X
da B., Yu, H., Ma, H., Wu, Z. (2019) Influence of inhibitors on reinforced bar corrosion of coral aggregate seawater concrete.J. Chinese Soci. Corro. Protection, 39(2), 1152-159
Dorothy, R., Sasilatha, T., Rajendran, S. (2021) Corrosion resistance of mild steel (Hull plate) in seawater in the presence of a coating of an oil extract of plant materials.Int. J. Corro. Scale Inhib, 10(2), 676-699
https://doi.org/10.17675/2305-6894-2021-10-2-13
Duduna, W., Akeme, O.N., Zinipere, T.M. (2019) Comparison of various adsorption isotherm models for allium cepa as corrosion inhibitor on austenitic stainless steel in sea water.International Journal of Scientific and Technology Research, 8(8): 961-969
Ekeke, I.C., Efe, S., Nwadire, F.C. (2022) Plant materials as green corrosion inhibitors for select iron alloys: A review.Zaštita materijala, vol. 63, br. 2, str. 183-202
https://doi.org/10.5937/zasmat2202183E
Elbasuney, S., Gobara, M., Zoriany, M., Maraden, A., Naeem, I. (2019) Colloidal ZrO2 nanoparticles for corrosion protection of AA2024 Environmental Nanotechnology.Monitoring and Management, 12:100242
https://doi.org/10.1016/j.enmm.2019.100242
Jeeva, K.S.P.A. (2019) Corrosion studies of zinc coated steel parts in seawater Portugaliae.Electrochimica Acta, 37(5), 307-315
https://doi.org/10.4152/pea.201905307
Jessima, S.J.H.M., Berisha, A., Srikandan, S.S., Subhashini, S. (2020) Preparation, characterization and evaluation of corrosion inhibition efficiency of sodium lauryl sulfate modified chitosan for mild steel in the acid pickling process.J. Molecular Liquids, 320,114382
https://doi.org/10.1016/j.molliq.2020.114382
Jović, V.D. (2022) Calculation of a pure double-layer capacitance from a constant phase element in the impedance measurements.Zaštita materijala, vol. 63, br. 1, str. 50-57
https://doi.org/10.5937/zasmat2201050J
Joycee, S.C., Raja, A.S., Amalraj, A.S., Rajendran, S. (2021) Inhibition of corrosion of mild steel pipeline carrying simulated oil well water by Allium sativum (Garlic) extract.Int. J. Corro. Scale Inhib, 10(3), 943-960
https://doi.org/10.17675/2305-6894-2021-10-3-8
Kasapović, D., Korać, F., Bikić, F. (2022) Testing the effectiveness of raspberry flower extract as an inhibitor of copper's corrosion in 3% NaCl.Zaštita materijala, vol. 63, br. 2, str. 115-121
https://doi.org/10.5937/zasmat2202115K
Petričević, A., Jović, V.D., Krstajić-Pajić, M.N., Zabinski, P., Elezović, N.R. (2022) Oxygen reduction reaction on electrochemically deposited sub-monolayers and ultra-thin layers of Pt on (Nb-Ti)2AlC substrate.Zaštita materijala, vol. 63, br. 2, str. 153-164
https://doi.org/10.5937/zasmat2202153P
Plaskeeva, E., Trusov, V. (2019) Inhibited composition for work in marine conditions.E3S Web of Conferences, 121: 02011
https://doi.org/10.1051/e3sconf/201912102011
Prabha, A.S., Kavitha, K., Shrine, H.B., Rajendran, S. (2020) Inhibition of corrosion of mild steel in simulated oil well water by an aqueous extract of Andrographis paniculata.Indian J.Che.Tech, 27(6), 452-460
Praveena, J.J.M., Clara, J.A., Rajendran, S.S., Amalraj, A.J. (2021) Inhibition of corrosion of mild steel in well water by an aqueous extract of soapnut (Sapindus Trifoliatus).Zaštita materijala, vol. 62, br. 4, str. 277-290
https://doi.org/10.5937/zasmat2104277P
Rajendran, D., Sasilatha, T., Amala, D.H.M.S., Santhammal, R.S., Lačnjevac, Č., Singh, G. (2022) Deep learning-based underwater metal object detection using input image data and corrosion protection of mild steel used in underwater study: A case study: Part B: Corrosion protection of mild steel used in underwater study.Zaštita materijala, vol. 63, br. 1, str. 15-22
https://doi.org/10.5937/zasmat2201015R
Rajendran, D., Sasilatha, T., Santhammal, R.S., Al-Hashem, A., Lačnjevac, Č., Singh, G. (2022) Inhibition of corrosion of mild steel hull plates immersed in natural sea water by sandalwood oil extract of some natural products.Zaštita materijala, vol. 63, br. 1, str. 23-36
https://doi.org/10.5937/zasmat2201023R
Schorr, M., Valdez, B., Eliezer, A., Salinas, R., Lora, C. (2019) Managing corrosion in desalination plants.Corro. Reviews, 37(2), 103-113
https://doi.org/10.1515/corrrev-2018-0038
Shanthy, P., Thangakani, J.A., Karthika, S., Rajendran, S., Jeyasundari, J. (2021) Corrosion inhibition by an aqueous extract of ervatamia divaricata.Int. J.Corro.Scale Inhib, 10(1), 331-348
https://doi.org/10.17675/2305-6894-2021-10-1-19
Shen, Y., Dong, Y., Yang, Y., Li, Q., Zhu, H., Zhang, W., Dong, L., Yin, Y. (2020) Study of pitting corrosion inhibition effect on aluminum alloy in seawater by biomineralized film.Bioelect.chem, 132:107408
https://doi.org/10.1016/j.bioelechem.2019.107408
Xu, Q., Ji, T., Yang, Y., Ye, Y. (2019) Steel rebar corrosion in artificial reef concrete with sulphoaluminate cement.Construction and Building Materials, 227:116685
##submission.downloads##
Objavljeno
Broj časopisa
Rubrika
Licenca
Sva prava zadržana (c) 2022 CC BY 4.0 by Authors
Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.