Primena mašinskog učenja u proučavanju inhibicije korozije

Autori

  • Thankappan Sasilatha AMET University, Department of EEE, Kanathur, Chennai, India Autor
  • Susai Rajendran St. Antony's College of Arts and Sciences for Women Thamaraipady, Department of Chemistry, Corrosion Research Centre, Tamil Nadu, India + Pondicherry University, Puducherry, India Autor
  • Senthil Kumaran Selvaraj Vellore Institute of Technology (VIT), Department of Manufacturing Engineering, School of Mechanical Engineering-SMEC, Tamil Nadu, India Autor
  • Časlav Lacnjevac University of Belgrade, Faculty of Agriculture, Serbia Autor
  • Rajendran Joseph Rathish PSNA College of Engineering and Technology, Dindigul, India Autor

DOI:

https://doi.org/10.5937/zasmat2203280R

Ključne reči:

veštačka inteligencija, mašinsko učenje, duboko učenje, neuronske mreže, algoritmi

Apstrakt

Veštačka inteligencija je grana nauke koja se bavi učenjem mašina da misle i deluju kao ljudi. ašinsko učenje se bavi omogu avanjem računarima da izvršavaju zadatke bez potrebe za eksplicitnim programiranjem. ašinsko učenje omogu ava računarima da uče bez potrebe za eksplicitnim programiranjem. ašinsko učenje je široko polje koje obuhvata širok spektar operacija mašinskog učenja kao što su grupisanje, klasifikacija i razvoj prediktivnih modela. Istraživanje mašinskog učenja ( L) i dubokog učenja (DL) sada pronalazi dom i u industriji i u akademskim krugovima. Tehnologije mašinskog učenja se sve više koriste u medicinskom snimanju. Za otkrivanje tumora i drugih malignih izraslina u ljudskom telu. Duboko učenje daje značajan doprinos napretku industrijske robotike. Algoritmi mašinskog učenja se koriste u industriji automobila koji se samostalno voze da vode vozilo do odredišta. Duboko učenje i mašinsko učenje se, takođe, koriste u nauci o koroziji i inženjerstvu. Koriste se za odabir molekula inhibitora iz velikog skupa dostupnih molekula.

Reference

Agarwal, A., Rathore, P., Jain, V., Rai, B. (2019) In-silico model for predicting the corrosion inhibition efficiency of steel inhibitors.NACE -International Corrosion Conference Series, March,13329

Atasoy, V.E., Suzer, A.E., Ekici, S. (2022) Comparative analysis of exhaust gas temperature based on Machine learning models for aviation applications.Journal of Energy Resources Technology, Transactions of the ASME, 144(8), 082101

https://doi.org/10.1115/1.4052771

Bertolucci, C.L., Zhang, D., van Ingelgem, Y., Steckelmacher, D., Nowé, A., Terryn, H. (2022) Reviewing machine learning of corrosion predictionin a data-oriented perspective. 6(8), 1-16

https://doi.org/10.1038/s41529-022-00218-4

Boukhari, Y., Boucherit, M.N., Zaabat, M., Amzert, S., Brahimi, K. (2018) Optimization of learning algorithms in the prediction of pitting corrosion.Journal of Engineering Science and Technology, 13(5), 1153-1164

Che, Y., Deng, Z., Tang, X., Lin, X., Nie, X., Hu, X. (2022) Lifetime and aging degradation prognostics for Lithium-ion battery packs based on a cell to pack method.Chinese Journal of Mechanical Engineering, 35(4), 1-16

https://doi.org/10.1186/s10033-021-00668-y

Deng, C., Wang, Y., Qin, C., Fu, Y., Lu, W. (2022) Gaussian mixture model deep neural network and its application in porosity prediction of deep carbonate reservoir.Geophysics, 87(2), 59-72

https://doi.org/10.1190/geo2020-0740.1

Deng, C., Wang, Y., Qin, C., Fu, Y., Lu, W. (2022) Selfdirected online machine learning for topology optimization.Nature Communications, 13(1): 338-338

https://doi.org/10.1038/s41467-021-27713-7

Feiler, C., Mei, D., Vaghefinazari, B., Würger, T., Meißner, R.H., Luthringer-Feyerabend, B.J.C., Winkler, D.A., Zheludkevich, M.L., Lamaka, S.V. (2020) In silico screening of modulators of magnesium dissolution.Corrosion Science, 163, 108245

https://doi.org/10.1016/j.corsci.2019.108245

He, B., Ye, L., Pei, M., Lu, P., Dai, B., Li, Z., Wang, K. (2022) A combined model for short-term wind power forecasting based on the analysis of numerical weather prediction data.Energy Reports, 8, 929-939

https://doi.org/10.1016/j.egyr.2021.10.102

Jain, D., Dwadasi, B.S., Kumar, D., Mishra, S., Ravikumar, B., Gupta, R., Srinivasan, S.G., Jain, V., Mynam, M., Maiti, S., Rai, B. (2019) Materials design in digital era: Challenges and opportunities.Transactions of the Indian Institute of Metals, 72(8), 2199-2208

https://doi.org/10.1007/s12666-019-01702-3

Kakati, T., Bhattacharyya, D.K., Kalita, J.K., Norden-Krichmar, T.M. (2022) DEGnext: Classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.BMC Bioinformatics, 23(17): 1-18

https://doi.org/10.1186/s12859-021-04527-4

Liao, J., Liu, Y., Piao, Y., Su, J., Cai, G., Wu, Y. (2022) GLE-net: A global and local ensemble network for aerial object detection.International Journal of Computional Intelligence Systems, 15(2), 1-12

https://doi.org/10.1007/s44196-021-00056-3

Liu, Y., Guo, Y., Wu, W., Xiong, Y., Sun, C., Yuan, L., Li, M. (2019) A machine learning-based QSAR model for benzimidazole derivatives as corrosion inhibitors by incorporating comprehensive feature selection.Interdiscip Sci, 11(4), 738-747

https://doi.org/10.1007/s12539-019-00346-7

Mena, J., Pujol, O., Vitrià, J. (2022) A survey on uncertainty estimation in Deep learning classification systems from a Bayesian perspective.ACM Computing Surveys, 54(9), 1-35

https://doi.org/10.1145/3477140

Newton, M.A.H., Mataeimoghadam, F., Zaman, R., Sattar, A. (2022) Secondary structure specific simpler prediction models for protein backbone angles.BMC Bioinformatics, 23(6), 1-14

https://doi.org/10.1186/s12859-021-04525-6

Oloulade, B.M., Gao, J., Chen, J., Lyu, T., Al-Sabri, R. (2022) Graph Neural architecture search: A survey.Tsinghua Science and Technology, 27(4), 692-708

https://doi.org/10.26599/TST.2021.9010057

Qiu, F., Zhang, G., Sheng, X., Jiang, L., Zhu, L., Xiang, Q., Jiang, B., Chen, P.K. (2022) Predicting students' performance in e-learning using learning process and behaviour data.Scientific Reports, 12(453): 1-15

https://doi.org/10.1038/s41598-021-03867-8

Quadri, T.W., Olasunkanmi, L.O., Fayemi, O.E., Akpan, E.D., Verma, C., Sherif, E.M., Khaled, K.F., Ebenso, E.E. (2021) Quantitative structure activity relationship and artificial neural network as vital tools in predicting coordination capabilities of organic compounds with metal surface: A review.Coordination Chemistry Reviews, 446, 214101

https://doi.org/10.1016/j.ccr.2021.214101

Ranjan, A., Shukla, S., Datta, D., Misra, R. (2022) Generating novel molecule for target protein (SARS-CoV-2) using drug-target interaction based on graph neural network.Network Modeling Analysis in Health Informatics and Bioinformatics, 11(6), 1-11

https://doi.org/10.1007/s13721-021-00351-1

Schiessler, E.J., Würger, T., Lamaka, S.V., Meißner, R.H., Cyron, C.J., Zheludkevich, M.L., Feiler, C., Aydin, R.C. (2021) Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models.Npj Computational Materials, 7(1), 193-199

https://doi.org/10.1038/s41524-021-00658-7

Ser, C.T., Žuvela, P., Wong, M.W. (2020) Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships.Applied Surface Science, 512, 145612

https://doi.org/10.1016/j.apsusc.2020.145612

Sun, X., Zhang, H., Wang, J., Shi, C., Hua, D., Li, J. (2022) Ensemble streamflow forecasting based on variational mode decomposition and long short term memory.Scientific Reports, 12(447), 1-12

https://doi.org/10.1038/s41598-021-03725-7

Thiagarajan, J.J., Thopalli, K., Rajan, D., Turaga, P. (2022) Training calibration-based counterfactual explainers for deep learning models in medical image analysis.Scientific Reports, 12(597): 1-15

https://doi.org/10.1038/s41598-021-04529-5

Varvara, S., Berghian-Grosan, C., Bostan, R., Lucacel, C.R., Salarvand, Z., Talebian, M., Raeissi, K., Izquierdo, J., Souto, R.M. (2021) Experimental characterization, machine learning analysis and computational modelling of the high effective inhibition of copper corrosion by 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol in saline environment.Electrochimica. Acta, 398, 139282

https://doi.org/10.1016/j.electacta.2021.139282

Vu, N.H., Mayer, J.R.R., Bitar-Nehme, E. (2022) Deep learning LSTM for predicting thermally induced geometric errors using rotary axes' powers as input parameters.CIRP Journal of Manufacturing Science and Technology, 37, 70-80

https://doi.org/10.1016/j.cirpj.2021.12.009

Winkler, D.A. (2017) Predicting the performance of organic corrosion inhibitors.Metals, 7(12), 553

https://doi.org/10.3390/met7120553

Würger, T., Feiler, C., Musil, F., Feldbauer, G.B.V., Höche, D., Lamaka, S.V., Zheludkevich, M.L., Meißner, R.H. (2019) Data science based Mg corrosion engineering.Frontiers in Materials, 6(53), 1-9

https://doi.org/10.3389/fmats.2019.00053

Zhang, J., Jiang, Y., Wu, S., Li, X., Luo, H., Yin, S. (2022) Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal selfattention mechanism.Reliability Engineering and System Safety, 221, 108297

https://doi.org/10.1016/j.ress.2021.108297

Zhang, X., Zheng, X., Mao, W. (2022) Adversarial perturbation defense on Deep Neural Networks.ACM Computing Surveys, 54(8), 1-36

https://doi.org/10.1145/3465397

##submission.downloads##

Objavljeno

2022-09-15

Broj časopisa

Rubrika

Articles