Tailored pema based polymer electrolyte for highly efficient and stable dye synthesized solar cells

Autori

DOI:

https://doi.org/10.62638/ZasMat1462

Apstrakt

This research paper provides a comprehensive analysis of polymer electrolytes in the development of dye-sensitized solar cells (DSSCs), an emerging photovoltaic technology offering a low-cost and flexible alternative to conventional silicon-based solar cells. Polymer electrolytes are investigated as promising substitutes for traditional liquid electrolytes due to their improved stability, flexibility, and ionic conductivity, all of which are critical for enhancing DSSC performance and longevity. The paper categorizes polymer electrolytes into solid, gel, composite, and ionic liquid-based types, discussing each category’s unique properties, composition, advantages, and limitations. Key materials, including various polymer matrices, ionic conductors, additives, and nanofillers, are examined in detail to understand their roles in achieving optimal ionic conductivity, thermal stability, and mechanical strength. Performance metrics such as conductivity, stability, flexibility, and photovoltaic efficiency are evaluated to provide insights into the practical application of these materials in DSSCs. Recent advancements, including novel polymer blends, nanocomposite electrolytes, and enhanced thermal stability, are highlighted to showcase the latest innovations in the field. Additionally, the review addresses significant challenges, such as ion transport limitations, durability, electrolyte leakage, and economic scalability, which currently hinder the widespread adoption of polymer electrolyte-based DSSCs. The paper concludes by identifying potential research gaps, including the need for further advancements in stability, eco-friendly materials, and scalable manufacturing methods. This review serves as a critical resource for researchers aiming to develop efficient, sustainable, and commercially viable DSSCs powered by advanced polymer electrolyte technologies.

Ključne reči:

Dye-Sensitized Solar Cells (DSSCs), polymer electrolytes, ionic conductivity, photovoltaic efficiency, thermal stability, nanocomposites, gel polymer electrolytes (GPEs), solid polymer electrolytes (SPEs), electrolyte leakage, scalability, eco-friendly materials, flexible solar cells, nanofillers, and photovoltaic technology

Reference

S. Nazir, A. G. Muhammad, I. S. Mohd Noor, M. Z. Azhan Yahya, P. K. Singh (2025) "Electric and electrochemical studies of polyether based electrolyte for energy application,” Zastita Mater., 66(2), 367–374, https://doi.org/10.62638/ZasMat1244.

R. Hsissou, R. Seghiri, Z. Benzekri, M. Hilali, M. Rafik, and A. Elharfi(2021 )“Polymer composite materials: A comprehensive review,” Composite structures, . 262, 113640, https://doi.org/10.1016/j.compstruct.2021.113640

B. K. Korir, J. K. Kibet, and S. M. Ngari (2024) "A review on the current status of dye‐sensitized solar cells: Toward sustainable energy,” Energy Science & Engineering., 12(8), 3188–3226, https://doi.org/10.1002/ese3.1815.

S. Kumar, M. K. Singh, M. Z. A. Yahya, I. S. M. Noor, P. K. Singh (2024) "Structural, electrochemical, and dielectric studies of phytagel and 1-ethyl-3-methylimidazolium tricyanomethanide-based bio-polymer electrolytes,” Zastita Mater., 65(4), 703–711, https://doi.org/10.62638/ZasMat1050.

F. L. Gbawoquiya et al. (2024) "Facile Synthesis and adsorptive removal of Rhodamine B dye from aqueous medium using green synthesized nanocomposite,” Zastita Mater., 65(3), 452–465, https://doi.org/10.62638/ZasMat1201.

S. Rawat, P. K. Singh, S. P. Pandey, R. C. Singh (2024) "Review on Comparative Study of Solid Polymer Electrolyte Polyethylene Oxide (PEO) Doped with Ionic Liquid,” Macromol. Symp., 413(1), 2300050, https://doi.org/10.1002/masy.202300050.

N. Pavithra, G. Landi, A. Sorrentino, S. Anandan (2018) "Advantages of Polymer Electrolytes Towards Dye‐sensitized Solar Cells,” in Rational Design of Solar Cells for Efficient Solar Energy Conversion, 1st ed., A. Pandikumar and R. Ramaraj, Eds., Wiley., 121–167. https://doi.org/10.1002/9781119437499.ch5.

A. Delices (2017) "Organized Organic Dye / Hole Transporting Materials for TiO2- and ZnO- based Solid-State Dye-Sensitized Solar Cells (s-DSSCs).,” phdthesis, Université Sorbonne Paris Cité, [: https://theses.hal.science/tel-01931367.

X. Fan et al. (2022) “Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes,” Chem. Rev., 122(23), 17155–17239, Dec. 2022, https://doi.org/10.1021/acs.chemrev.2c00196.

W. Ren, C. Ding, X. Fu, Y. Huang (2021) “Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives,” Energy Storage Materials., 34, 515–535. https://doi.org/10.1016/j.ensm.2020.10.018

N. F. Mazuki, A. P. P. Abdul Majeed, Y. Nagao, A. S. Samsudin, (2019) “Studies on ionics conduction properties of modification CMC-PVA based polymer blend electrolytes via impedance approach,” Polym. Test., 81, 106234, https://doi.org/10.1016/j.polymertesting.2019.106234.

P. Raut, V. Kishnani, K. Mondal, A. Gupta, S. C. Jana (2022) “A Review on Gel Polymer Electrolytes for Dye-Sensitized Solar Cells,” Micromachines., 13(5), 50680, https://doi.org/10.3390/mi13050680.

D. Zheng, X. Yang, L. Čuček, J. Wang, T. Ma, C. Yin (2024) “Revolutionizing dye-sensitized solar cells with nanomaterials for enhanced photoelectric performance,” J. Clean. Prod., 464, 142717, https://doi.org/10.1016/j.jclepro.2024.142717.

J. Conradie (2024) “Effective dyes for DSSCs–Important experimental and calculated parameters,” Energy Nexus., 13, 100282. https://doi.org/10.1016/j.nexus.2024.100282.

K. Prajapat, M. Dhonde, K. Sahu, P. Bhojane, V. Murty, P. M. Shirage (2023) “The evolution of organic materials for efficient dye-sensitized solar cells,” J. Photochem. Photobiol. C Photochem. Rev., 55,100586. https://doi.org/10.1016/j.jphotochemrev.2023.100586.

X. Zhou et al., (2024) “Gel polymer electrolytes for rechargeable batteries toward wide-temperature applications,” Chemical Society Reviews., 53(10), 5291. [Online].https://doi.org/10.1039/D3CS00551H

L. P. Teo, M. H. Buraidah, A. K. Arof (2021) “Development on solid polymer electrolytes for electrochemical devices,” Molecules., 26(21), 6499. https://doi.org/10.3390/molecules26216499.

P. Raut, V. Kishnani, K. Mondal, A. Gupta, S. C. Jana (2022) “A Review on Gel Polymer Electrolytes for Dye-Sensitized Solar Cells,” Micromachines., 13(5).680. https://doi.org/10.3390/mi13050680.

N. Wang, J. Hu, L. Gao, T. Ma (2020) “Current progress in solid-state electrolytes for dye-sensitized solar cells: A mini-review,” Journal of Electronic Materials., 49(12), 7085–7097. https://doi.org/10.1007/s11664-020-08483-2.

D. Sygkridou, A. Rapsomanikis, E. Stathatos (2017) “Functional transparent quasi-solid state dye-sensitized solar cells made with different oligomer organic/inorganic hybrid electrolytes,” Sol. Energy Mater. Sol. Cells., 159, 600–607. https://doi.org/10.1016/j.solmat.2016.01.019.

M. Kumar, S. S. Sekhon (2002) “Ionic conductance behaviour of plasticized polymer electrolytes containing different plasticizers,” Ionics., 8(3), 223–233. https://doi.org/10.1007/BF02376072

K. Aruchamy, S. Ramasundaram, S. Divya, M. Chandran, K. Yun, T. H. Oh (2023) “Gel polymer electrolytes: advancing solid-state batteries for high-performance applications,” Gels., 9(7), 585. https://doi.org/10.3390/gels9070585

M. S. Ahmed, M. Islam, B. Raut, S. Yun, H. Y. Kim, K.-W. Nam (2024) “A comprehensive review of functional gel polymer electrolytes and applications in lithium-ion battery,” Gels., 10(9), 563. https://doi.org/10.3390/gels10090563

A. Brazier et al., (2007) “Ionic liquids in electrochromic devices,” Electrochimica acta., 52(14), 4792–4797. https://doi.org/10.1016/j.electacta.2007.01.025.

A. Fajdek-Bieda, A. Wróblewska (2024) “The use of natural minerals as reinforcements in mineral-reinforced polymers: a review of current developments and prospects,” Polymers., 16(17), 2505. https://doi.org/10.3390/polym16172505

A. Fajdek-Bieda, A. Wróblewska (2024) “The Use of Natural Minerals as Reinforcements in Mineral-Reinforced Polymers: A Review of Current Developments and Prospects,” Polymers., 16(17), 2505. https://doi.org/10.3390/polym16172505.

R. Singh, A. R. Polu, B. Bhattacharya, H.-W. Rhee, C. Varlikli, P. K. Singh (2016) “Perspectives for solid biopolymer electrolytes in dye sensitized solar cell and battery application,” Renew. Sustain. Energy Rev., 5, 1098–1117, https://doi.org/10.1016/j.rser.2016.06.026.

R. J. Sengwa, P. Dhatarwal, S. Choudhary (2015) “Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes,” Current Applied Physics, 15(2), 135–143. https://doi.org/10.1016/j.cap.2014.12.003.

M. S. H. Evan et al. (2023) “Polyethylene oxide-based nanocomposites as polymer electrolytes for dye-sensitized solar cell application,” ECS Journal of Solid State Science and Technology., 12(11), 115004. https://doi.org/10.1149/2162-8777/ad0cd5

N. Zebardastan, M. H. Khanmirzaei, S. Ramesh, K. Ramesh (2016) “Novel poly (vinylidene fluoride-co-hexafluoro propylene)/polyethylene oxide based gel polymer electrolyte containing fumed silica (SiO2) nanofiller for high performance dye-sensitized solar cell,” Electrochimica Acta., 220, 573–580. https://doi.org/10.1016/j.electacta.2016.10.135

P. Manafi, H. Nazockdast, M. Karimi, M. Sadighi, L. Magagnin (2021) “A study on the microstructural development of gel polymer electrolytes and different imidazolium-based ionic liquids for dye-sensitized solar cells,” J. Power Sources., 481, 228622. https://doi.org/10.1016/j.jpowsour.2020.228622.

M. Rayung et al. (2020) “Bio-Based Polymer Electrolytes for Electrochemical Devices: Insight into the Ionic Conductivity Performance,” Materials., 13(4).838. https://doi.org/10.3390/ma13040838.

C. Cazan, A. Enesca, L. Andronic (2021) “Synergic effect of TiO2 filler on the mechanical properties of polymer nanocomposites,” Polymers, 13(12), 2017. https://doi.org/10.3390/polym13122017

S. Konwar et al. (2023) “Stable and efficient dye-sensitized solar cells and supercapacitors developed using ionic-liquid-doped biopolymer electrolytes,” Molecules, 28(13), 5099. https://doi.org/10.3390/molecules28135099

Y. Aihara, S. Arai, K. Hayamizu (2000) “Ionic conductivity, DSC and self diffusion coefficients of lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of the gels and the diffusion mechanism of the ions,” Electrochimica acta., 45(8–9), 1321–1326. https://doi.org/10.1016/S0013-4686(99)00339-4

S. Rashidi, N. Karimi, B. Sunden, K. C. Kim, A. G. Olabi, O. Mahian (2022) “Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors,” Prog. Energy Combust. Sci., 88, 100966. https://doi.org/10.1016/j.pecs.2021.100966.

T. K. L. Nguyen, T.-N. Pham-Truong (2024) “Recent advancements in gel polymer electrolytes for flexible energy storage applications,” Polymers., 16(17), 2506. https://doi.org/10.3390/polym16172506

X. Xu, A. Makaraviciute, J. Pettersson, S.-L. Zhang, L. Nyholm, Z. Zhang,(2019), “Revisiting the factors influencing gold electrodes prepared using cyclic voltammetry,” Sensors and Actuators B: Chemical, 283, 146–153,. https://doi.org/10.1016/j.snb.2018.12.008

A. Davoodabadi, J. Li, Y. Liang, D. L. Wood III, T. J. Singler, C. Jin (2019) “Analysis of electrolyte imbibition through lithium-ion battery electrodes,” Journal of Power Sources., 424, 193–203. https://doi.org/10.1016/j.jpowsour.2019.03.115

J. F. Langford, M. R. Schure, Y. Yao, S. F. Maloney, A. M. Lenhoff, (2023), “Effects of pore structure and molecular size on diffusion in chromatographic adsorbents,” J. Chromatogr. A, 1126(1), 95–106. https://doi.org/10.1016/j.chroma.2006.06.060.

F. Bella, R. Bongiovanni (2013) “Photoinduced polymerization: An innovative, powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells,” J. Photochem. Photobiol. C Photochem. Rev., 16, 1–21. https://doi.org/10.1016/j.jphotochemrev.2013.03.002.

H. Iftikhar, G. G. Sonai, S. G. Hashmi, A. F. Nogueira, P. D. Lund (2019) “Progress on electrolytes development in dye-sensitized solar cells,” Materials, 12(12), 1998. https://doi.org/10.3390/ma12121998

S. Rahman et al. (2023) “Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects,” RSC Adv., 13(28), 19508–19529. https://doi.org/10.1039/d3ra00903c.

L. Andrade, H. A. Ribeiro, A. Mendes (2014) "Dye-sensitized solar cells: an overview,” Energy Production and Storage: Inorganic Chemical Strategies for a Warming World, p. 53–72. https://www.ijrer.com/index.php/ijrer/issue/archive

J. Parameswaranpillai, S. Thomas, Y. Grohens (2014) “Polymer Blends: State of the Art, New Challenges, and Opportunities,” in Characterization of Polymer Blends, 1st ed., S. Thomas, Y. Grohens, and P. Jyotishkumar, Eds., Wiley., p. 1–6. https://doi.org/10.1002/9783527645602.ch01.

Y. Kusumawati, A. S. Hutama, D. V. Wellia, R. Subagyo (2021) “Natural resources for dye-sensitized solar cells,” Heliyon., 7(12), e08436 , Accessed: Jun. 26, 2025. [Online]. Available: https://www.cell.com/heliyon/fulltext/S2405-8440(21)02539-1 https://doi.org/10.1016/j.heliyon.2021.e08436.

D. Wei et al., (2022) “Ultra-flexible and foldable gel polymer lithium–ion batteries enabling scalable production,” Materials Today Energy., 23, 100889. https://doi.org/10.1016/j.mtener.2021.100889.

J. D. Roy-Mayhew, I. A. Aksay (2014) “Graphene Materials and Their Use in Dye-Sensitized Solar Cells,” Chem. Rev., 114(12), 6323–6348. https://doi.org/10.1021/cr400412a.

H. Matsui, K. Okada, T. Kitamura, N. Tanabe (2009) “Thermal stability of dye-sensitized solar cells with current collecting grid,” Solar Energy Materials and Solar Cells., 93 (6–7), 1110–1115. https://doi.org/10.1016/j.solmat.2009.01.008.

A. Murali et al. (2022) “Insights into the emerging alternative polymer-based electrolytes for all solid-state lithium-ion batteries: A review,” Materials Letters., 313, p. 131764. https://doi.org/10.1016/j.matlet.2022.131764.

D. Devadiga, M. Selvakumar, P. Shetty, M. S. Santosh (2022) “The integration of flexible dye-sensitized solar cells and storage devices towards wearable self-charging power systems: “A review,” Renewable and Sustainable Energy Reviews., 159, 112252. https://doi.org/10.1016/j.rser.2022.112252.

M. Hossen (2022) “Integrating solar cells into building materials (Building-Integrated Photovoltaics-BIPV) to turn buildings into self-sustaining energy sources,” Available at SSRN 5042406. https://doi.org/10.18535/ijsrm/v10i9.ec05.

S. Rahman et al. (2023) "Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects,” RSC advances, 13, (28), 19508–19529. https://doi.org/10.1039/D3RA00903C

R. Avilés-Betanzos, G. Oskam, D. Pourjafari (2023) “Low-temperature fabrication of flexible dye-sensitized solar cells: influence of electrolyte solution on performance under solar and indoor illumination,” Energies., 16(15), 5617. https://doi.org/10.3390/en16155617

G. Li, L. Sheng, T. Li, J. Hu, P. Li, K. Wang (2019) “Engineering flexible dye-sensitized solar cells for portable electronics,” Solar Energy., 177, 80–98. https://doi.org/10.1016/j.solener.2018.11.017.

A. Andualem, S. Demiss (2018) “Review on dye-sensitized solar cells (DSSCs),” Edelweiss Appli Sci Tech., 2, 145–150, Available: https://www.researchgate.net/publication/332613207_Review_on_DyeSensitized_Solar_Cells_DSSCs. https://doi.org/10.33805/2639-6734.103

M. Dhorkule, P. Lamrood, S. Ralegankar, S. P. Patole, S. S. Wagh, H. M. Pathan (2024) “Unveiling the Efficiency of Dye-Sensitized Solar Cells: A Journey from Synthetic to Natural Dyes,” ES Food Agrofor., 16(2), 1086. https://doi.org/10.30919/esfaf1086

S. Rahman et al. (2023) “Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects,” RSC Adv., 13(28), 19508–19529. https://doi.org/10.1039/D3RA00903C.

S. N. Tamilselvan, S. Shanmugan (2024) “Towards sustainable solar cells: unveiling the latest developments in bio-nano materials for enhanced DSSC efficiency,” Clean Energy., 8(3), 238–257. https://doi.org/10.1093/ce/zkae031.

D. Li, D. Qin, M. Deng, Y. Luo, Q. Meng (2009) “Optimization the solid-state electrolytes for dye-sensitized solar cells,” Energy & environmental science.,. 2(3), 283–29. https://doi.org/10.1039/b813378f.

S. J. Park et al. (2013) “Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells,” ACS Nano., 7(5), 4050–4056. https://doi.org/10.1021/nn4001269.

D.Masud, H. K. Kim (2023) Redox Shuttle-Based Electrolytes for Dye-Sensitized Solar Cells: Comprehensive Guidance, Recent Progress, and Future Perspective,” ACS Omega., 8(7), 6139–6163. https://doi.org/10.1021/acsomega.2c06843

P. Gnida, M. F. Amin, A. K. Pająk, B. Jarząbek (2022) “Polymers in High-efficiency solar cells: The latest reports,” Polymers, 14(10), 1946. https://doi.org/10.3390/polym14101946

M. S. Ahmed, M. Islam, B. Raut, S. Yun, H. Y. Kim, K.-W. Nam (2024) “A comprehensive review of functional gel polymer electrolytes and applications in lithium-ion battery,” Gels, 10(9), 563. https://doi.org/10.1002/cnma.201500093.

Rahman et al. (2023) Research on dye sensitized solar cells: recent advancement toward the various constituents of dye sensitized solar cells for efficiency enhancement and future prospects,” RSC Adv., 13(28), 19508–19529, https://doi.org/10.1039/d3ra00903c.

##submission.downloads##

Objavljeno

2025-09-01

Broj časopisa

Rubrika

Research Paper