Mehaničke karakteristike legura AL-1050 i AL-6061 deformisanih korišćenjem ravnokanalnog procesa ugaonog valjanja
DOI:
https://doi.org/10.5937/zasmat2204484KKljučne reči:
legure aluminijuma, ECAR, dislokacije, mikrostruktura, mehanička svojstvaApstrakt
Jedna od učinkovitih tehnika teških plastičnih deformacija (SPD) je proces jednakokanalnog kutnog valjanja (ECAR) koji može dovesti do pravilne ultrafino zrnate (UFG) strukture materijala, glavni cilj ovog rada je proučavanje poboljšanja mehaničkih svojstava unutar 1050 i 6061 listova aluminijske legure. Postoji više pokušaja istraživanja mikrostrukture i mehaničkih svojstava materijala traka, utjecaja procesnih parametara kao što su broj jednakih kanalnih kutnih prolaza valjanja, rute (A&C) i temperatura žarenja nakon svakog prolaza na deformacijsko ponašanje 6061 i 1050 aluminijskih legura. ispitan eksperimentalno. Rezultati su pokazali da je za AL-6061 bez procesa žarenja u prvom prolazu to bilo veće naprezanje od prolaza nakon procesa žarenja, a također su zrna bila fina u prvom prolazu. Za AL-1050 je naznačeno da je uz temperaturu okoline u šest prolaza mehanička svojstva su poboljšana i zabeleženo je veće naprezanje s više prolaza u šest prolaza za način C, a također su fina zrna mikrostrukture dobivena u šest prolaza u usporedbi s materijalom s postupkom žarenja koji postaje duktilniji s više prolazi.Reference
(2003) A.S.E92-82 Standard test method for Vickers hardness of metallic materials. West Conshohocken: ASTM Int
Annual (2008) ASTM Book of Standards: Section 3, Metals Test Methods and Analytical Procedures vol. 03.03-Nondestructive Testing
Standard (2009) E8/E8M-09, Stand. test method Tens. Test. Met. Mater. West Conshohocken, PA
Afshin, E., Kadkhodayan, M. (2015) An experimental investigation into the warm deep-drawing process on laminated sheets under various grain sizes.Mater. Des., 87, 25-35
https://doi.org/10.1016/j.matdes.2015.07.061
Al-Baidhani, M.H., Ameen, H.A., Alsabti, H.A. Deep Drawing of Sandwich Plate with Aluminum Foam Core
Azimi, A., Tutunchilar, S., Faraji, G., Givi, M.K.B. (2012) Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100-O alloy.Mater. Des., 42, 388-394
https://doi.org/10.1016/j.matdes.2012.06.035
Bozcheloei, J.E., Sedighi, M., Hashemi, R. (2019) The effect of temperature on the mechanical properties and forming limit diagram of Al 5083 produced by equal channel angular rolling.Int. J. Adv. Manuf. Technol., 105(10), 4389-4400
https://doi.org/10.1007/s00170-019-04586-1
Brooks, C.R. (1991) Heat treating of aluminum alloys.ASM Handb., 4, 841-879
Chino, Y., et al. (2003) Metals Handbook Ninth Edition Metals Handbook Ninth Edition 9, 351-388, 1985.Mater. Trans., 44(7), 1284-1289
https://doi.org/10.2320/matertrans.44.1284
Entezami, S.S., Honarpisheh, M. (2016) A study on the hardness of 7075 and 5052 aluminum alloys in the equal channel angular rolling process.Bull. la Société R. des Sci. Liège, 85, 879-889
https://doi.org/10.25518/0037-9565.5709
Estrin, Y., Rhee, K., Lapovok, R., Thomson, P.F. (2007) Mechanical behavior of alloy AA6111 processed by severe plastic deformation: Modeling and experiment
https://doi.org/10.1115/1.2744396
Faraji, G., Mashhadi, M.M., Kim, H.S. (2012) Deformation behavior in tubular channel angular pressing (TCAP) using triangular and semicircular channels.Mater. Trans., p.213
https://doi.org/10.2320/matertrans.MD201107
Gallab, M., Taha, M., Rashed, A., Nabhan, A. (2022) Effect of Low Content of Al2O3 Nanoparticles on the Mechanical and Tribological Properties of Polymethyl Methacrylate as a Denture Base Material.Egypt. J. Chem., 65(8), 1-9
https://doi.org/10.21608/ejchem.2022.88597.4786
Honarpisheh, M., Entezami, S.S., Akhavan, S. (2019) Effect of equal channel angular rolling process on the fracture mechanisms of Al-7057 and Al-5052 alloys.Metallogr. Microstruct. Anal., 8(3), 336-348
https://doi.org/10.1007/s13632-019-00540-5
Huang, K., Marthinsen, K., Zhao, Q., Logé, R.E. (2018) The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials.Prog. Mater. Sci., 92, 284-359
https://doi.org/10.1016/j.pmatsci.2017.10.004
Humphreys, F.J., Hatherly, M. (2012) Recrystallization and related annealing phenomena. Elsevier
Kang, H.G., Lee, J.P., Huh, M.Y., Engler, O. (2008) Stability against coarsening in ultra-fine grained aluminum alloy AA 3103 sheet fabricated by continuous confined strip shearing.Mater. Sci. Eng. A, 486(1-2), 470-480
https://doi.org/10.1016/j.msea.2007.09.048
Kassar, M., Ahmed, K., Elsheikh, M., El-Abden, S. Tube Spinning Using Functionally Graded Ballizing. Available SSRN 3977528
Kaufman, J.G. (2000) Introduction to aluminum alloys and tempers. ASM international, p.142
Kim, K., Kang, W., Lee, S-I., Park, S.H., Yoon, J. (2017) Microstructural evolution and enhancement of mechanical properties of Al1050 by tubular channel angular extrusion.Mater. Sci. Eng. A, 696, 26-32
https://doi.org/10.1016/j.msea.2017.04.057
Mahmoodi, M., Naderi, A. (2016) Applicability of artificial neural network and nonlinear regression to predict mechanical properties of equal channel angular rolled Al5083 sheets.Lat. Am. J. Solids Struct., 13, 1515-1525
https://doi.org/10.1590/1679-78252154
Mahmoodi, M., Sedighi, M., Tanner, D.A. (2014) Experimental study of process parameters' effect on surface residual stress magnitudes in equal channel angular rolled aluminium alloys.Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 228(12), 1592-1598
https://doi.org/10.1177/0954405414522449
Nabhan, A., Rashed, A., Ghazaly, N.M., Abdo, J., Haneef, M.D. (2021) Tribological properties of Al2O3 nanoparticles as Lithium grease additives.Lubricants, 9(1), 9-12
https://doi.org/10.3390/lubricants9010009
Nabhan, A., Ameer, A.K., Rashed, A. (2019) Tribological and Mechanical Properties of HDPE Reinforced by Al2O3 Nanoparticles for Bearing Materials. p.232
Pande, C.S., Cooper, K.P. (2009) Nanomechanics of Hall-Petch relationship in nanocrystalline materials.Prog. Mater. Sci., 54(6), 689-706
https://doi.org/10.1016/j.pmatsci.2009.03.008
Parvin, H., Kazeminezhad, M. (2014) Development a dislocation density based model considering the effect of stacking fault energy: Severe plastic deformation.Comput. Mater. Sci., 95, 250-255
https://doi.org/10.1016/j.commatsci.2014.07.027
Pirgazi, H., Akbarzadeh, A., Petrov, R., Kestens, L. (2008) Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding.Mater. Sci. Eng. A, 497(1-2), 132-138
https://doi.org/10.1016/j.msea.2008.06.025
Rahimi, H.R., Sedighi, M., Hashemi, R. (2018) Forming limit diagrams of fine-grained Al 5083 produced by equal channel angular rolling process.Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 232(11), 922-930
https://doi.org/10.1177/1464420716655560
Sabirov, I., Enikeev, N.A., Murashkin, M.Y., Valiev, R.Z. (2015) Bulk nanostructured materials with multifunctional properties. Springer, vol. 118
https://doi.org/10.1007/978-3-319-19599-5
https://doi.org/10.1007/978-3-319-19599-5_3
Sun, Y., Tsuji, N., Fujii, H. (2016) Microstructure and mechanical properties of dissimilar friction stir welding between ultrafine grained 1050 and 6061-t6 aluminum alloys.Metals (Basel), 6(10), 249-257
https://doi.org/10.3390/met6100249
Tan, E., Kibar, A.A., Gür, C.H. (2011) Mechanical and microstructural characterization of 6061 aluminum alloy strips severely deformed by dissimilar channel angular pressing.Mater. Charact., 62(4), 391-397
https://doi.org/10.1016/j.matchar.2011.01.016
Valiev, R. (2009) Nanostructuring of metallic materials by SPD processing for advanced properties.Int. J. Mater. Res., 100(6), 757-761
https://doi.org/10.3139/146.110095
Verma, D., et al. (2016) Bulk ultrafine-grained interstitial-free steel processed by equal-channel angular pressing followed by flash annealing.J. Mater. Eng. Perform., 25(12), 5157-5166
https://doi.org/10.1007/s11665-016-2392-x
Yang, X., Yi, J., Ni, S., Du, Y., Song, M. (2016) Microstructural evolution and structure-hardness relationship in an Al-4wt.% Mg alloy processed by high-pressure torsion.J. Mater. Eng. Perform., 25(5), 1909-1915
https://doi.org/10.1007/s11665-016-2044-1
Zhao, M., Li, J.C., Jiang, Q. (2003) Hall-Petch relationship in nanometer size range.J. Alloys Compd., 361(1-2), 160-164
##submission.downloads##
Objavljeno
Broj časopisa
Rubrika
Licenca
Sva prava zadržana (c) 2022 CC BY 4.0 by Authors
Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.