Poboljšanje mehaničkog ponašanja i trošenja ojačane legure aluminijuma sa česticama pepela životinjskog porekla

Autori

  • Abdullahi Tanko Mohammed Waziri Umaru Federal Polytechnic, Department of Mechanical Engineering, Kebbi State, Nigeria Autor
  • Habeeb Muhammed Sani Federal Polytechnic Nekede, Department of Mechanical Engineering, Owerri, Imo State, Nigeria Autor
  • Idawu Yakubu Suleiman University of Nigeria, Department of Metallurgical and Materials Engineering, Nsukka, Nigeria Autor
  • Lasisi Shaibu Waziri Umaru Federal Polytechnic, Department of Metallurgical Engineering, Kebbi State, Nigeria Autor

DOI:

https://doi.org/10.5937/zasmat2204386O

Ključne reči:

legura aluminijuma, pepeo od kravljeg roga, otpornost na habanje, mikrostruktura, mehanička svojstva, primenjena opterećenja

Apstrakt

Istraživački rad je ispitivao mehaničko ponašanje i habanje legura aluminijuma ojačanih pepelom od kravljeg roga (CHA) koji je isplativ i ekološki prihvatljiv materijal u različitim težinskim procentima (0 tež. % do 15 tež. %) pri 3 tež. % interval. Pepeo od kravljeg roga je okarakterisan rendgenskom fluorescencijom (KSRF). Morfologija matrice i kompozita proučavani su pomoću skenirajućeg elektronskog mikroskopa (SEM) za distribuciju čestica pepela kravljeg roga unutar matrice. Ponašanje na habanje legure i kompozita proizvedenih na različitim armaturama je sprovedeno korišćenjem Taber mašine za ispitivanje habanja. KSRF je pokazao da sastav CHA sadrži ugljenik (95,70%) silicijum (2,60%) kalcijum (1,00%) i druge sastojke. Ispitivane mehaničke osobine rastu sa povećanjem od 3 tež. % do 15 tež. % CHA. Morfologije su otkrile ujednačenu distribuciju CHA unutar matrice što je dovelo do poboljšanja i mehaničkih i habajućih svojstava. Otpornost na habanje kompozita raste sa povećanjem primenjenog opterećenja i opada sa povećanjem težinskog procenta CHA i to se može koristiti u automobilskoj industriji i industriji za proizvodnju kočionih papučica električnih izolatora i dr.

Reference

Abdulwahab, M., Dodo, R.M., Suleiman, I.Y., Gebi, A.I., Umaru, I. (2017) Wear behavior of Al-7%Si0.3%Mg/melon shell ash particulate composites.Heliyon, 3, e00375

https://doi.org/10.1016/j.heliyon.2017.e00375

Al-Rubaie, K.S., Yoshimura, H.N., de Mello, J.D.B. (1999) Two-body abrasive wear of Al-SiCcomposites.Wear, 233-235, 444-454

https://doi.org/10.1016/S0043-1648(99)00185-4

Canakci, A., Arslan, F. (2012) Abrasive wear behaviour of B4C particle reinforced Al2024 MMCs.Int. J. Adv. Manuf. Techn., 63(5-8), 785-795

https://doi.org/10.1007/s00170-012-3931-8

Chhak, V., Chattopadhyay, H., Dora, T.L. (2020) A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites, Part A. 56, 1059-1074

https://doi.org/10.1016/j.jmapro.2020.05.042

Chhak, V., Chattopadhyay, H. (2020) Fabrication and heat treatment of graphene nanoplatelets reinforced aluminium nanocomposites.Mater. Sci. Eng. A, 791, 13922-13940

https://doi.org/10.1016/j.msea.2020.139657

Dieter, G.E. (1961) Mechanical Metallurgy. New York: McGraw-Hill, p.350-360

https://doi.org/10.5962/bhl.title.35895

Ezhilvannan, S., Vizhian, S.P. (2013) Development and characterization of copper-coated basalt fiber reinforced aluminium alloy composites.Int. J. Eng. Res. Technol, 2(8), 2278-2285

Ipek, R. (2005) Adhesive wear behaviour of B4C and SiC reinforced 4147 Al matrix composites.J. Mater. Process. Technol., 162-163, 71-75

https://doi.org/10.1016/j.jmatprotec.2005.02.207

Karthikeyan, A., Nallusamy, S. (2017) Investigation on mechanical properties and wear behavior of Al-Si-SiC-graphite composite using SEM and EDAX.IOP Conf Ser, Mats Sci Eng, 225,1-10

https://doi.org/10.1088/1757-899X/225/1/012281

Madakson, P.B., Yawas, D.S., Apasi, A. (2012) Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications.Ijest, 4, 1190-1198

Meena, K.L., Manna, A., Banwait, S., Jaswant, S. (2013) An analysis of mechanical properties of the developed Al/SiC-MMC's.Am. J. Mech. Eng., 1(1), 14-19

https://doi.org/10.12691/ajme-1-1-3

Obasi, N.A., Joy, U., Eberechukwu, E., Akubumo, E.I., Okorie, U.C. (2012) Proximate composition, extraction, characterization and comparative assessment of coconut and melon seeds and seed oils.Pak. J. Biol. Sci., 15, 1-9

https://doi.org/10.3923/pjbs.2012.1.9

Radhika, N., Raghu, R. (2016) Synthesis of functionally graded Al LM25/zirconia composite and its sliding wear characterization using response surface methodology.Iran. J.Mater.Sci.Eng, 13(4), 41-52

Radhika, N. (2018) Analysis of Three Body Abrasive Wear Behaviour of Centrifugally Cast Aluminium Composite Reinforced with Ni Coated SiC using Taguchi Technique.Tribol. Ind., 40 (1), 81-91

https://doi.org/10.24874/ti.2018.40.01.07

Rohatgi, P.K., Liu, Y., Asthana, R. (1991) A map for wear mechanisms in Al alloys.J. Mater., Sci., 26, 99-102

https://doi.org/10.1007/BF00576038

Sandeep, S., Nanda, T., Pandey, O.P. (2018) Effect of Particle Size on Dry Sliding Wear Behaviour of Sillimanite Reinforced Aluminium Matrix Composites.Ceram., 44 (1) 104-14

https://doi.org/10.1016/j.ceramint.2017.09.132

Saravanan, H.C., Hebbar, H.S., Ravishankar, K.S. (2011) Mechanical properties of fly dash reinforced aluminium alloy (al6061) composites.Int. J. Mech. Mater. Eng, 1, 1-45

Shabani, M.O., Mazahery, A. (2012) Development of an extrusion process to ameliorate the tribological properties of heat-treated Al Mg Si (Cu) system alloys matrix composites in consolidated state.Tribol. Ind., 34(3), 166-173

Singh, M., Mondal, D.P., Modi, O.P., Jha, A.K. (2002) Two-body abrasive wear behaviour of aluminium alloy-sillimanite particle reinforced composite.Wear, 253 (3). 357-368

https://doi.org/10.1016/S0043-1648(02)00153-9

Sreenivasan, A., Vizhian, S.P., Shivakumar, N.D., Munirajua, M., Raguraman, M. (2011) A study of microstructure and wear behaviour of TiB2/Al metal matrix composites.Lat. Am. J. Solids Struct., 8(1), 1-8

https://doi.org/10.1590/S1679-78252011000100001

Suleiman, I.Y., Abdulwahab, M., Awe, F.E. (2016) Influence of particulate loading on the mechanical properties of al-4.5 Cu/GSA composite.Nig J Eng., 23, 86-97

Suleiman, I.Y., Aigbodion, V.S., Obayi, C.O., Mu'azu, K. (2019) Surface characterisation, corrosion and mechanical properties of polyester-polyester/snail shell powder coatings of steel pipeline for naval applications.Int J Adv Manuf Technol., 101, 2441-2447

https://doi.org/10.1007/s00170-018-2908-7

Suleiman, I.Y., Sani, A.S., Mohammed, T.A. (2018) Investigation of mechanical, microstructure and wear behaviors of Al-12%Si/reinforced with melon shell ash particulates.Int. J. Eng. Res. Technol., 97, 4137-4144

https://doi.org/10.1007/s00170-018-2157-9

Suleiman, I.Y., Kasim, A., Mohammed, A.T., Sirajo, M.Z. (2021) Evaluation of Mechanical, Microstructures and Wear Behaviours of Aluminium Alloy Reinforced with Mussel Shell Powder for Automobile Applications.Stroj vestn-J Mech E, 67(1-2), 27-35

https://doi.org/10.5545/sv-jme.2020.6953

Surappa, M.K. (2003) Aluminum matrix composites: challenges and opportunities.Sadhana, 28, 319-3134

https://doi.org/10.1007/BF02717141

Tofigh, A.A., Shabani, M.O. (2013) Efficient optimum solution for high strength Al alloys matrix composites.Ceram., 39(7), 7483-7490

https://doi.org/10.1016/j.ceramint.2013.02.097

Torralba, J.M., Costa, da C.E., Velasco, F.P. (2003) Maluminum matrix composites: an overview.Journal of Materials Processing Technology, 133, 203-206

https://doi.org/10.1016/S0924-0136(02)00234-0

Veeresh, K.G.B., Rao, C.S.P., Selvaraj, N. (2016) Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites a review.JMMCE, 10, 59-91

https://doi.org/10.4236/jmmce.2011.101005

Wu, S.Q., Wang, H.Z., Tjong, S.C. (1996) Mechanical and wear behaviour of an Al/Si alloy metal matrix composite reinforced with alumino silicate fibre.Compos Sci Technol, 56, 1261-1270

https://doi.org/10.1016/S0266-3538(96)00085-1

##submission.downloads##

Objavljeno

2022-12-15

Broj časopisa

Rubrika

Articles