Synthesis and scalable process for fabrication of Perovskite Solar Cells using organic and inorganic hole transport materials

Autori

  • Monika Srivastava Centre for Solar Cell and Renewable Energy, Department of Physics, Sharda University, Greater Noida, India Autor
  • Muhd Zu Azhan Yahya Muhd Zu Azhan Yahya Faculty of Defence Science and Technology, Universiti Petrahanan Nasional Malaysia (UPNM), Kuala Lumpur, Malaysi Autor https://orcid.org/0000-0003-1129-0552
  • Ikhwan Sayafiq Mohd. Noor Physics Division, Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor Darul Ehsan, Malaysia Autor https://orcid.org/0000-0003-0983-782X
  • R.C. Singh Yahya Faculty of Defence Science and Technology, Universiti Petrahanan Nasional Malaysia (UPNM), Kuala Lumpur, Malaysia Autor

DOI:

https://doi.org/10.62638/ZasMat1257

Ključne reči:

Perovskite, Solar energy, fabrication of Perovskite Solar Cells, inorganic hole transport materials, perovskite solar cells

Apstrakt

The Organic Inorganic Lead Iodide perovskite material has emerged as a pioneer in being an active material for third-generation solar cells. Apart from the synthesis, the scalable mechanism which is being used for the deposition process, greatly influences the performance of the cell owing to its impact on the morphology, uniform thickness, and interface between two functional layers. This study briefly discusses the various deposition processes involved in assembling the layers of perovskite solar cells (PSC). Hole transport materials (HTM) are a crucial part of the PSC providing efficient transport of the charge carriers. However, the effect of organic and inorganic HTMs is highly pronounced in the PSCs.  This study also discusses the effect of organic and inorganic HTM on the stability and efficiency of the sandwich-structured PSC.

Reference

U. EIA (2015) Analysis of the impacts of the Clean Power Plan, US Energy Information Administration, Washington DC, pp. 1-96.

M.A. McGeoch, S.H. Butchart, D. Spear, E. Marais, E. Kleynhans, A. Symes, J. Chanson, M. Hoffmann (2010) Global indicators of biological invasion: species numbers, biodiversity impact and policy responses, Diversity and Distributions, 16(1), 95-108. https://doi.org/10.1111/j.1472-4642.2009.00633.x

R.F. Service (2005) Solar energy. Is it time to shoot for the sun?, Science (New York, NY), 309(5734), 548-551. https://doi.org/10.1126/science.309.5734.548

H. Şengül, T.L. Theis (2011) An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use, Journal of Cleaner Production, 19(1), 21-31. https://doi.org/10.1016/j.jclepro.2010.08.010

M. Grätzel (2009) Recent advances in sensitized mesoscopic solar cells, Accounts of Chemical Research, 42(11), 1788-1798. https://doi.org/10.1021/ar900141y

P. Roy, A. Ghosh, F. Barclay, A. Khare, E. Cuce (2022) Perovskite solar cells: a review of the recent advances, Coatings, 12(8), p. 1089. https://doi.org/10.3390/coatings12081089

K. Nishimura, M. Aamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, S. Hayase (2020) Lead-free tin-halide perovskite solar cells with 13% efficiency, Nano Energy, 74, 104858. https://doi.org/10.1016/j.nanoen.2020.104858

A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society, 131(17), 6050-6051. https://doi.org/10.1021/ja809598r

H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, N.G. Park (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Scientific Reports, 2(1), 591. https://doi.org/10.1038/srep00591

J.W. Lee, H.S. Kim, N.G. Park (2016) Lewis acid–base adduct approach for high efficiency perovskite solar cells, Accounts of Chemical Research, 49(2), 311-319. https://doi.org/10.1021/acs.accounts.5b00440

T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, T. White (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH₃NH₃)PbI₃ for solid-state sensitised solar cell applications, Journal of Materials Chemistry A, 1(18), 5628-5641. https://doi.org/10.1039/C3TA10518K

Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang (2015) Electron-hole diffusion lengths> 175 μm in solution-grown CH₃NH₃PbI₃ single crystals, Science, 347(6225), 967-970. https://doi.org/10.1126/science.aaa5760

J.R. Ponseca, T.J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, V. Sundström (2014) Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination, Journal of the American Chemical Society, 136(14), 5189-5192. https://doi.org/10.1021/ja412583t

M.K. Assadi, S. Bakhoda, R. Saidur, H. Hanaei (2018) Recent progress in perovskite solar cells, Renewable and Sustainable Energy Reviews, 81, 2812-2822. https://doi.org/10.1016/j.rser.2017.06.088

D.B. Mitzi, M.T. Prikas, K. Chondroudis (1999) Thin film deposition of organic−inorganic hybrid materials using a single source thermal ablation technique, Chemistry of Materials, 11(3), 542-544. https://doi.org/10.1021/cm9811139

M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338(6107), 643-647. https://doi.org/10.1126/science.1228604

G. Longo, C. Momblona, M.G. La-Placa, L. Gil-Escrig, M. Sessolo, H.J. Bolink (2017) Fully vacuum-processed wide band gap mixed-halide perovskite solar cells, ACS Energy Letters, 3(1), 214-219. https://doi.org/10.1021/acsenergylett.7b01217

A.M. Igual-Muñoz, J. Ávila, P.P. Boix, H.J. Bolink (2020) FAPb₀.₅Sn₀.₅I₃: A narrow bandgap perovskite synthesized through evaporation methods for solar cell applications, Solar RRL, 4(2), 1900283. https://doi.org/10.1002/solr.202070024

Y.H. Chiang, M. Anaya, S.D. Stranks (2020) Multisource vacuum deposition of methylammonium-free perovskite solar cells, ACS Energy Letters, 5(8), 2498-2504. https://doi.org/10.1021/acsenergylett.0c00839

J. Feng, Y. Jiao, H. Wang, X. Zhu, Y. Sun, M. Du, Y. Cao, D. Yang, S.F. Liu (2021) High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells, Energy & Environmental Science, 14(5), 3035-3043. https://doi.org/10.1039/D1EE00656K

J. Li, H. Wang, X.Y. Chin, H.A. Dewi, K. Vergeer, T.W. Goh, J.W.M. Lim, J.H. Lew, K.P. Loh, C. Soci, T.C. Sum (2020) Highly efficient thermally co-evaporated perovskite solar cells and mini-modules, Joule, 4(5), 1035-1053. https://doi.org/10.1016/j.joule.2020.03.007

P. Zhang, M. Li, W.C. Chen (2022) A perspective on perovskite solar cells: emergence, progress, and commercialization, Frontiers in Chemistry, 10, 802890. https://doi.org/10.3389/fchem.2022.802890

N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nature Materials, 13(9), 897-903. https://doi.org/10.1038/nmat4014

D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel (2016) Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nature Energy, 1(10), 1-5. https://doi.org/10.1038/nenergy.2016.189

Y. Gao, L. Yang, F. Wang, Y. Sui, Y. Sun, M. Wei, J. Cao, H. Liu (2018) Anti-solvent surface engineering via diethyl ether to enhance the photovoltaic conversion efficiency of perovskite solar cells to 18.76%, Superlattices and Microstructures, 113, 761-768. https://doi.org/10.1016/j.spmi.2017.12.014

Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam, L. Han (2016) Perovskite solar cells with 18.21% efficiency and area over 1 cm² fabricated by heterojunction engineering, Nature Energy, 1(11), 1-7. https://doi.org/10.1038/nenergy.2016.215

P.L. Qin, G. Yang, Z.W. Ren, S.H. Cheung, S.K. So, L. Chen, J. Hao, J. Hou, G. Li (2018) Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated Lewis base polymer induced trap passivation and charge extraction, Advanced Materials, 30(12), 1706126. https://doi.org/10.1002/adma.201706126

M. Srivastava, P.K. Singh, R.C. Singh (2022) Comparative study of PSCs formed by one step and sequential deposition of CH₃NH₃PbI₃ using PEDOT: PSS as HTM, Materials Today: Proceedings, 49, 3340-3344. https://doi.org/10.1016/j.matpr.2021.03.318

C.H. Chiang, M.K. Nazeeruddin, M. Grätzel, C.G. Wu (2017) The synergistic effect of H₂O and DMF towards stable and 20% efficiency inverted perovskite solar cells, Energy & Environmental Science, 10(3), 808-817. https://doi.org/10.1039/C6EE03539H

X. Xu, M. Li, Y.M. Xie, Y. Ma, C. Ma, Y. Cheng, et al. (2019) Porous and intercrossed PbI₂-CsI nanorod scaffold for inverted planar FA-Cs mixed cation perovskite solar cells, ACS Applied Materials & Interfaces, 11(6), 6126-6135. https://doi.org/10.1021/acsami.8b21835

Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You (2016) Enhanced electron extraction using SnO₂ for high-efficiency planar-structure HC(NH₂)₂PbI₃-based perovskite solar cells, Nature Energy, 2(1), 1-7. https://doi.org/10.1038/nenergy.2016.187

J. Zhang, X. Ji, X. Wang, L. Zhang, L. Bi, Z. Su, X. Gao, W. Zhang, L. Shi, G. Guan, A. Abudula (2024) Efficient and stable inverted perovskite solar modules enabled by solid-liquid two-step film formation, Nano-Micro Letters, 16, 190-190. https://doi.org/10.1007/s40820-023-00943-6

Y. Yoo, G. Seo, H.J. Park, J. Kim, J. Jang, W. Cho, J.H. Kim, J. Shin, J.S. Choi, D. Lee, S.W. Baek (2024) Low-temperature rapid UV sintering of sputtered TiO₂ for flexible perovskite solar modules, Journal of Materials Chemistry A, 12(3), 1562-1572. https://doi.org/10.1039/D3TA01474A

J. Zhang, X.G. Hu, K. Ji, S. Zhao, D. Liu, B. Li, P.X. Hou, C. Liu, L. Liu, S.D. Stranks, H.M. Cheng (2024) High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes, Nature Communications, 15(1), 2245. https://doi.org/10.1038/s41467-024-20085-1

N.G. Park (2015) Perovskite solar cells: an emerging photovoltaic technology, Materials Today, 18(2), 65-72. https://doi.org/10.1016/j.mattod.2014.07.007

P.K. Singh, R. Singh, V. Singh, S.K. Tomar, B. Bhattacharya, Z.H. Khan (2017) Effect of crystal and powder of CH₃NH₃I on the CH₃NH₃PbI₃ based perovskite sensitized solar cell, Materials Research Bulletin, 89, 292-296. https://doi.org/10.1016/j.materresbull.2016.12.018

M. Srivastava, K. Surana, P.K. Singh, R.C. Singh (2021) Nickel oxide embedded with polymer electrolyte as efficient hole transport material for perovskite solar cell, Engineered Science, 17, 216-223. https://doi.org/10.30919/es8d474

Y. Xu, L. Zhu, J. Shi, X. Xu, J. Xiao, J. Dong, H. Wu, Y. Luo, D. Li, Q. Meng (2016) The effect of humidity upon the crystallization process of two-step spin-coated organic–inorganic perovskites, ChemPhysChem, 17(1), 112-118. https://doi.org/10.1002/cphc.201500928

M.I. El-Henawey, R.S. Gebhardt, M.M. El-Tonsy, S. Chaudhary (2016) Organic solvent vapor treatment of lead iodide layers in the two-step sequential deposition of CH₃NH₃PbI₃-based perovskite solar cells, Journal of Materials Chemistry A, 4(5), 1947-1952. https://doi.org/10.1039/C5TA08032A

N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park (2015) Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide, Journal of the American Chemical Society, 137(27), 8696-8699. https://doi.org/10.1021/jacs.5b04930

N.G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery (2016) Towards stable and commercially available perovskite solar cells, Nature Energy, 1(11), 1-8. https://doi.org/10.1038/nenergy.2016.139

N. Rajamanickam, S. Kumari, V.K. Vendra, B.W. Lavery, J. Spurgeon, T. Druffel, M.K. Sunkara (2016) Stable and durable CH₃NH₃PbI₃ perovskite solar cells at ambient conditions, Nanotechnology, 27(23), 235404. https://doi.org/10.1088/0957-4484/27/23/235404

T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Grätzel, T.J. White (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH₃NH₃)PbI₃ for solid-state sensitized solar cell applications, Journal of Materials Chemistry A, 1(18), 5628-5641. https://doi.org/10.1039/C3TA10518K

S. Ye, W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu, C. Huang (2015) CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%, Nano Letters, 15(6), 3723-3728. https://doi.org/10.1021/acs.nanolett.5b00683

J.Y. Jeng, K.C. Chen, T.Y. Chiang, P.Y. Lin, T.D. Tsai, Y.C. Chang, T.F. Guo, P. Chen, T.C. Wen, Y.J. Hsu (2014) Nickel oxide electrode interlayer in CH₃NH₃PbI₃ perovskite/PCBM planar-heterojunction hybrid solar cells, Advanced Materials, 26(24), 4107-4113. https://doi.org/10.1002/adma.201400772

K.C. Wang, J.Y. Jeng, P.S. Shen, Y.C. Chang, E.W.G. Diau, C.H. Tsai, T.Y. Chao, H.C. Hsu, P.Y. Lin, P. Chen, T.F. Guo (2014) P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells, Scientific Reports, 4(1), 4756. https://doi.org/10.1038/srep04756

Y. Yoo, G. Seo, J.H. Park, J. Kim, J. Jang, W. Cho, J.H. Kim, J. Shin, J.S. Choi, D. Lee, S.W. Baek (2024) Low-temperature rapid UV sintering of sputtered TiO₂ for flexible perovskite solar modules, Journal of Materials Chemistry A, 12(3), 1562-1572. https://doi.org/10.1039/D3TA05666J

##submission.downloads##

Objavljeno

2024-12-15

Broj časopisa

Rubrika

Scientific paper