Nanomaterials in bacterial detection: current trends and future outlook

Autori

  • Rashi Chaudhary Department of Life Science, Sharda University, Greater Noida, India Autor
  • N.B. Singh Department of Chemistry and Biochemistry, Sharda University, Greater Noida, India Autor
  • Garima Nagpal Department of Environmental Science, Sharda University, Greater Noida, India Autor https://orcid.org/0000-0002-5182-8233
  • Fredrick K Saah Department of Environmental Science, Sharda University, Greater Noida, India Autor
  • Amit Kumar Singh Department of Pharmacy Practice, Galgotia University, Greater Noida Autor https://orcid.org/0009-0006-4993-4201

DOI:

https://doi.org/10.62638/ZasMat1256

Ključne reči:

Contamination, nanomaterial, nanoprobes, pathogenic bacteria, sensing

Apstrakt

Contamination by pathogenic bacteria represents a severe risk to public health and well-being. We outlined current approaches to detecting and sensing harmful bacteria by integrating recognition elements with nanomaterials (NMs) in this study. Nanomaterials have emerged as a transformative technology for bacterial detection due to their unique physicochemical properties, including high surface area, quantum effects, and enhanced reactivity. This review highlights the current trends in the application of various nanomaterials, such as gold nanoparticles, carbon nanotubes, and quantum dots, in the detection of bacterial pathogens. These materials enable the development of selective, and rapid detection methods through mechanisms like surface plasmon resonance, electrochemical sensing, and fluorescence. Furthermore, integrating nanomaterials with microfluidic devices and biosensors is discussed, showcasing advancements in point-of-care diagnostics. Challenges such as stability, reproducibility, and potential toxicity of nanomaterials are addressed, alongside regulatory considerations. The future outlook emphasizes the potential of emerging nanomaterials, such as graphene and metal-organic frameworks, to revolutionize bacterial detection. This review aims to enhance the scalability, cost-effectiveness, and environmental sustainability of these technologies, paving the way for widespread clinical and environmental applications.

Reference

P.D. Patel (2002) (Bio) sensors for measurement of analytes implicated in food safety: a review. Trends in Analytical Chemistry.; 21(2), 96-115. https://doi.org/10.1016/S0165-9936(01)00136-4

K.E. Jones, N.G. Patel,, M.A. Levy, A. Storeygard, D. Balk, J. Gittleman, P. Daszak (2008) Global trends in emerging infectious diseases. Nature., 451(7181), 990-993.

https://doi.org/10.1038/nature06536

P.C. Ray, S.A. Khan, A.K. Singh, D. Senapati, Z. Fan (2012) Nanomaterials for targeted detection and photothermal killing of bacteria. Chemical Society Reviews.; 41(8), 3193-209.

https://doi.org/10.1039/C2CS15340H

L.V. Poulsen (1999) Microbial Biofilm in Food Processing. LWT - Food Science and Technology.; 32(6), 321–326.

https://doi.org/10.1006/fstl.1999.0561

M.S. Kumar, S. Ghosh, S. Nayak, A.P. Das (2016) Recent advances in biosensor-based diagnosis of urinary tract infection. Biosensors and Bioelectronics.; 80, 497-510.

https://doi.org/10.1016/j.bios.2016.02.023

J.D. Nostrand Van, A.D. Junkins, R.K. Bartholdi (2000) Poor predictive ability of urinalysis and microscopic examination to detect urinary tract infection. American journal of clinical pathology.; 113(5), 709-13. https://doi.org/10.1309/428N-60XK-UQ3Q-BXLC

R. Naravaneni, K. Jamil (2005) Rapid detection of food-borne pathogens by using molecular techniques. Journal of medical microbiology.; 54(1), 51-54. https://doi.org/10.1099/jmm.0.45687-0

G.O'. Toole, H.B. Kaplan, R. Kolter (2000) Biofilm formation as microbial development. Annual Reviews in Microbiology.; 54(1), 49-79.

https://doi.org/10.1146/annurev.micro.54.1.49

P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton (2002) Biofilms as complex differentiated communities. Annual Reviews in Microbiology.; 56(1), 187-209.

https://doi.org/10.1146/annurev.micro.56.012302.160705

M. Goudarzi, M. Navidinia, N. Khadembashi, R. Rasouli (2021) Biofilm Matrix Formation in Human: Clinical Significance, Diagnostic Techniques, and Therapeutic Drugs. Archives of Clinical Infectious Diseases.; 16(3), 12345,

https://doi.org/10.5812/archcid.107919

D. Ivnitski, I. Abdel-Hamid, P. Atanasov, E. Wilkins (1999) Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics.; 14(7), 599-624.

https://doi.org/10.1016/S0956-5663(99)00039-1

A.M. Pappa, O. Parlak, G. Scheiblin, P. Mailley, A. Salleo, R.M. Owens (2018) Organic electronics for point-of-care metabolite monitoring. Trends in Biotechnology.; 36(1), 45-59.

https://doi.org/10.1016/j.tibtech.2017.10.022

A. Haleem, M. Javaid, R.P. Singh, R. Suman, S. Rab (2021) Biosensors applications in medical field: A brief review. Sensors International.; 2, 100100. https://doi.org/10.1016/j.sintl.2021.100100

A. Munawar, Y. Ong, R. Schirhagl, M.A. Tahir, W.S. Khan, S.Z. Bajwa (2019) Nano sensors for diagnosis with optical, electric and mechanical transducers. RSC advances.; 9(12), 6793-803. https://doi.org/10.1039/C8RA10144B

Z. Kotsiri, A. Vantarakis, F. Rizzotto, D. Kavanaugh, N. Ramarao, J. Vidic (2019) Sensitive detection of E. coli in artificial seawater by aptamer-coated magnetic beads and direct PCR. Applied Sciences.; 9(24),5392. https://doi.org/10.3390/app9245392

C.A. Choi, Z.A. Mazrad, G. Lee, I. In, K.D. Lee, S.Y. Park (2018) Boronate-based fluorescent carbon dot for rapid and selectively bacterial sensing by luminescence off/on system. Journal of Pharmaceutical and Biomedical Analysis.; 159, 1-0. https://doi.org/10.1016/j.jpba.2018.06.043

Z. Kotsiri, J. Vidic, A. Vantarakis (2022) Applications of biosensors for bacteria and virus detection in food and water–A systematic review. journal of environmental sciences.; 111, 367-79.

https://doi.org/10.1016/j.jes.2021.04.009

M. Kundu, P. Krishnan, R.K. Kotnala, G. Sumana (2019) Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends in food science & technology.; 88, 157-78.

https://doi.org/10.1016/j.tifs.2019.03.024

M.A. Islam, A. Karim, B. Ethiraj, T. Raihan, A. Kadier (2022) Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnology Advances.; 55, 107901. https://doi.org/10.1016/j.biotechadv.2021.107901

K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello (2012) Gold nanoparticles in chemical and biological sensing. Chemical reviews.; 112(5), 2739-79. https://doi.org/10.1021/cr2001178

A.J. Haes, R.P. Van Duyne (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society.; 124(35), 10596-604.

https://doi.org/10.1021/ja020393x

T.A. Taton, G. Lu, C.A. Mirkin (2001) Two-color labeling of oligonucleotide arrays via size-selective scattering of nanoparticle probes. Journal of the American Chemical Society.; 123(21), 5164-5. https://doi.org/10.1021/ja0102639

T. Adam, S.C. Gopinath (2022) Nanosensors: Recent perspectives on attainments and future promise of downstream applications. Process Biochemistry.; 117, 153-73.

https://doi.org/10.1016/j.procbio.2022.03.024

M. Alafeef, P. Moitra, D. Pan (2020) Nano-enabled sensing approaches for pathogenic bacterial detection. Biosensors and Bioelectronics.; 165, 112276. https://doi.org/10.1016/j.bios.2020.112276

R. Singh, M.S. Smitha, S.P. Singh (2014) The role of nanotechnology in combating multi-drug resistant bacteria. Journal of Nanoscience and Nanotechnology.; 14(7), 4745-56.

https://doi.org/10.1166/jnn.2014.9527

P.V. Baptista, M.P. McCusker, A. Carvalho, D.A. Ferreira, N.M. Mohan, M. Martins, A.R. Fernandes (2018) Nano-strategies to fight multidrug resistant bacteria— “A Battle of the Titans”. Frontiers in Microbiology.; 9, 1441.

https://doi.org/10.3389/fmicb.2018.01441

R.A. Luz, R.M. Iost, F.N. Crespilho (2013) Nanomaterials for biosensors and implantable bio-devices. Nanobioelectrochemistry: From Implanta-ble Biosensors to Green Power Generation.; p.27-48. https://doi.org/10.1007/978-3-642-29250-7_2

M. Berrettoni, D. Tonelli, P. Conti, R. Marassi, M. Trevisani (2004) Electrochemical sensor for indirect detection of bacterial population. Sensors and Actuators B: Chemical.; 102(2), 331-5. https://doi.org/10.1016/j.snb.2004.04.022

P. Lakhera, V. Chaudhary, P. Kush, P. Kumar (2022) Nanomaterial-mediated biosensors: concept and biological applications. Multifunctional Nanocarriers.; p.523-553.

https://doi.org/10.1016/B978-0-323-85041-4.00020-2

M.D. Angione, R. Pilolli, S. Cotrone, M. Magliulo, A. Mallardi, G. Palazzo, L. Sabbatini, D. Fine, A. Dodabalapur, N. Cioffi, L. Torsi (2011) Carbon based materials for electronic bio-sensing. Materials Today.; 14(9), 424-33.

https://doi.org/10.1016/S1369-7021(11)70187-0

H.A. Joung, N.R. Lee, S.K. Lee, J. Ahn, Y.B. Shin, H.S. Choi, C.S. Lee, S. Kim, M.G. Kim (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resonance biosensor. Analytica Chimica Acta.; 630(2), 168-73.

https://doi.org/10.1016/j.aca.2008.10.001

M. Koets, T. Van der Wijk, J.T. Van Eemeren, A. Van Amerongen, M.W. Prins (2009) Rapid DNA multi-analyte immunoassay on a magneto-resi-stance biosensor. Biosensors and Bioelectronics.; 24(7), 1893-8.

https://doi.org/10.1016/j.bios.2008.09.023

H. Lee, E. Sun, D. Ham, R. Weissleder (2008) Chip–NMR biosensor for detection and molecular analysis of cells. Nature Medicine.; 14(8), 869-74. https://doi.org/10.1038/nm.1711

M. Mujika, S. Arana, E. Castano, M. Tijero, R. Vilares, J.M. Ruano-López, A. Cruz, L. Sainz, J. Berganza (2009) Magnetoresistive immunosensor for the detection of Escherichia coli O157: H7 including a microfluidic network. Biosensors and Bioelectronics.; 24(5), 1253-8.

https://doi.org/10.1016/j.bios.2008.07.024

S. Zhu, C. Du, Y. Fu (2009) Localized surface plasmon resonance-based hybrid Au–Ag nanoparti¬cles for detection of Staphylococcus aureus enterotoxin B. Optical Materials.; 31(11), 1608-13. https://doi.org/10.1016/j.optmat.2009.03.009

H.A. Joung, N.R. Lee, S.K. Lee, J. Ahn, Y.B. Shin, H.S. Choi, C.S. Lee, S. Kim, M.G. Kim (2008) High sensitivity detection of 16s rRNA using peptide nucleic acid probes and a surface plasmon resona¬nce biosensor. Analytica Chimica Acta.; 630(2), 168-73. https://doi.org/10.1016/j.aca.2008.10.001

D. Zhang, D.J. Carr, E.C. Alocilja (2009) Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosensors and Bioelectronics.; 24(5), 1377-81. https://doi.org/10.1016/j.bios.2008.07.081

H.D. Hill, R.A. Vega, C.A. Mirkin (2007) Nonenzymatic detection of bacterial genomic DNA using the bio bar code assay. Analytical Chemistry.; 79(23), 9218-23. https://doi.org/10.1021/ac701626y

J. Ji, J.A. Schanzle, M.B. Tabacco (2004) Real-time detection of bacterial contamination in dynamic aqueous environments using optical sensors. Analytical Chemistry.; 76(5), 1411-8.

https://doi.org/10.1021/ac034914q

Y. Liu, R. Brandon, M. Cate, X. Peng, R. Stony, M. Johnson (2007) Detection of pathogens using luminescent CdSe/ZnS dendron nanocrystals and a porous membrane immunofilter. Analytical chemistry.; 79(22), 8796-802.

https://doi.org/10.1021/ac0709605

A.C. Chang, J.B. Gillespie, M.B. Tabacco (2001) Enhanced detection of live bacteria using a dendrimer thin film in an optical biosensor. Analytical Chemistry.; 73(3), 467-70.

https://doi.org/10.1021/ac000460a

W. Shen, B.D. Schrag, M.J. Carter, G. Xiao (2008) Quantitative detection of DNA labeled with magnetic nanoparticles using arrays of MgO-based magnetic tunnel junction sensors. Applied Physics Letters.; 93(3), 34-42.. https://doi.org/10.1063/1.2963970

S.J. Mechery, X.J. Zhao, L. Wang, L.R. Hilliard, A. Munteanu, W. Tan (2006) Using bioconjugated nanoparticles to monitor E. coli in a flow channel. Chemistry–An Asian Journal.; 1(3), 384-90. https://doi.org/10.1002/asia.200600009

Q. Yang, Y. Liang, T. Zhou, G. Shi, L. Jin (2009) Electrochemical investigation of platinum-coated gold nanoporous film and its application for Escherichia coli rapid measurement. Electroche-mistry Communications.; 11(4), 893-6.

https://doi.org/10.1016/j.elecom.2009.02.021

S. Pal, E.C. Alocilja (2009) Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples. Biosensors and Bioelectronics.; 24(5), 1437-44. https://doi.org/10.1016/j.bios.2008.08.020

Y.H. Lin, S.H. Chen, Y.C. Chuang, Y.C. Lu, T.Y. Shen, C.A. Chang, C.S. Lin (2008) Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157: H7. Biosensors and Bioelectronics.; 23(12), 1832-7.

https://doi.org/10.1016/j.bios.2008.02.030

Z.G. Chen (2008) Conductometric immunosensors for the detection of staphylococcal enterotoxin B based bio-electrocalytic reaction on micro-comb electrodes. Bioprocess and Biosystems Engine-ering.; 31, 345-50. https://doi.org/10.1007/s00449-007-0168-2

H.M. So, D.W. Park, E.K. Jeon, Y.H. Kim, B.S. Kim, C.K. Lee, S.Y. Choi, S.C. Kim, H. Chang, J.O. Lee (2008) Detection and titer estimation of Escherichia coli using aptamer‐functionalized single‐walled carbon‐nanotube field‐effect transistors. Small.; 4(2), 197-201. https://doi.org/10.1002/smll.200700664

S. Viswanathan, L.C. Wu, M.R. Huang, J.A. Ho (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly (3, 4-ethylenedioxythiophene)-coated carbon nanotubes. Analytical Chemistry.; 78(4), 1115-1121.

https://doi.org/10.1021/ac051435d

P.R. Brasil de Oliveira Marques, A. Lermo, S. Campoy, H. Yamanaka, J. Barbe, S. Alegret, M.I. Pividori (2009) Double-tagging polymerase chain reaction with a thiolated primer and electrochemical genosensing based on gold nanocomposite sensor for food safety. Analytical Chemistry.; 81(4), 1332-9. https://doi.org/10.1021/ac801736b

R.A. Villamizar, A. Maroto, F.X. Rius, I. Inza, M.J. Figueras (2008) Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosensors and Bioelectronics.; 24(2), 279-83. https://doi.org/10.1016/j.bios.2008.03.046

Y. Cheng, Y. Liu, J. Huang, K. Li, Y. Xian, W. Zhang, L. Jin (2009) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochimica Acta.; 54(9), 2588-94.

https://doi.org/10.1016/j.electacta.2008.10.072

A.D. Maynard, R.J. Aitken, T. Butz, V. Colvin, K Donaldson, G Oberdörster, MA Philbert, J Ryan, A Seaton, V Stone, SS Tinkle. (2006) Safe handling of nanotechnology. Nature. Nov 16, 444(7117):267-9. https://doi.org/10.1038/444267a

M. Matsishin, A. Rachkov, A. Errachid, S. Dzyadevych, A. Soldatkin (2016) Development of impedimetric DNA biosensor for selective detection and discrimination of oligonucleotide sequences of the rpoB gene of Mycobacterium tuberculosis. Sensors and Actuators B: Chemical.; 222, 1152-8. https://doi.org/10.1016/j.snb.2015.08.012

H. Vaisocherová-Lísalová, I. Víšová, M.L. Ermini, T. Špringer, X.C. Song, J. Mrázek, J. Lamačová, N.S. Lynn Jr, P. Šedivák, J. Homola (2016) Low-fouling surface plasmon resonance biosensor for multi-step detection of foodborne bacterial pathogens in complex food samples. Biosensors and Bioelectronics.; 80, 84-90.

https://doi.org/10.1016/j.bios.2016.01.040

P.K. Pandey, P.H. Kass, M.L. Soupir, S. Biswas, V.P Singh (2014) Contamination of water resources by pathogenic bacteria. Amb Express.; 4, 1-6. https://doi.org/10.1186/s13568-014-0051-x

N. Panchal, V. Jain, R. Elliott, Z. Flint, P. Worsley, C. Duran, T. Banerjee, S. Santra (2022) Plasmon-Enhanced Bimodal Nanosensors: An Enzyme-Free Signal Amplification Strategy for Ultrasensitive Detection of Pathogens. Analytical Chemistry.; 94(40), 13968-77.

https://doi.org/10.1021/acs.analchem.2c03215

S. Nair, V. Gautam, R. Kumar, A. Verma, V.K. Jain, S. Nagpal (2022) A novel sensing platform using silicon nanowires/reduced graphene oxide to detect pathogenic E. coli (MTCC4430) and its application in water samples. Toxicology and Environmental Health Sciences.; 14(3), 253-60.

https://doi.org/10.1007/s13530-022-00136-7

Y. Benserhir, A.C. Salaün, F. Geneste, N. Oliviero, L. Pichon, A. Jolivet-Gougeon (2022) Silicon nanowires-based biosensors for the electrical detection of Escherichia coli. Biosensors and Bioelectronics.; 216, 114625.

https://doi.org/10.1016/j.bios.2022.114625

S. Nqunqa, T. Muluadzi, N. Njomo, U. Feleni, R.F. Ajayi (2022) Musa Paradaisica and Vitis vinifera Functionalised Ag-NPs: Electrochemical and Optical Detection of Escherichia coli in Seawater. Journal of Surface Engineered Materials and Advanced Technology.; 12, 35-59. https://doi.org/10.4236/jsemat.2022.123004

M. Huang, X. Zhou, H. Wang, D. Xing (2018) Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Analytical Chemistry.; 90(3), 2193-200.

https://doi.org/10.1021/acs.analchem.7b04542

S. Riedel, K.C. Carroll (2010) Blood cultures: key elements for best practices and future directions. Journal of infection and chemotherapy.;16, 301-16. https://doi.org/10.1007/s10156-010-0069-1

W. Villena Gonzales, A.T. Mobashsher, A. Abbosh (2019) The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors.; 19(4), 800. https://doi.org/10.3390/s19040800

K.S. Jaiswal, N.N. Kadamannil, R. Jelinek (2023) Carbon nanomaterials in microbial sensing and bactericidal applications. Current Opinion in Colloid & Interface Science, 66, 101719. https://doi.org/10.3390/s19040800

C. Liu, N. Yazdani, C.S. Moran, C. Salomon, C.J. Seneviratne, S. Ivanovski, P. Han (2024) Unveiling clinical applications of bacterial extracellular vesi-cles as natural nanomaterials in disease diagnosis and therapeutics. Acta Biomaterialia.; 180, 18-45. https://doi.org/10.1016/j.actbio.2024.04.022

S. Ishii, M.J. Sadowsky (2008) Escherichia coli in the environment: implications for water quality and human health. Microbes and Environments.; 23(2), 101-108. https://doi.org/10.1264/jsme2.23.101

S.D. Richardson (2012) Environmental mass spectrometry: emerging contaminants and current issues. Analytical Chemistry.; 84(2), 747-778. https://doi.org/10.1021/ac202903d

G. Aragay, J. Pons, A. Merkoçi (2011) Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews.; 111(5), 3433-58. https://doi.org/10.1021/cr100383r

V.B. Juska (2020) Design, development and characterization of nanostructured electrochemical sensors (Doctoral dissertation, University College Cork). https://hdl.handle.net/10468/10021

S. Rodriguez-Mozaz, M.J. Lopez de Alda, D. Barceló (2006) Biosensors as useful tools for environmental analysis and monitoring. Analytical and Bioanalytical Chemistry.; 386, 1025-1041. https://doi.org/10.1007/s00216-006-0574-3

G. Griffiths, J. Gruenberg, M. Marsh, J. Wohlmann, A.T. Jones, R.G. Parton (2022) Nanoparticle entry into cells; the cell biology weak link. Advanced Drug Delivery Reviews.; 29, 114403.

https://doi.org/10.1016/j.addr.2022.114403

J.Y. Lai, Y.T. Chen, T.H. Wang, H.S. Chang, J.L. Lai (2007) Biosensor integrated with the transducer to detect the glucose. IEEE International Symposium on Circuits and Systems New Orleans, LA, USA.; 2015-2018. IEEE.

https://doi.org/10.1109/ISCAS.2007.378433

S.K. Bhardwaj, N. Bhardwaj, V. Kumar, D. Bhatt, A. Azzouz, J. Bhaumik, K.H. Kim, A. Deep (2021) Recent progress in nanomaterial-based sensing of airborne viral and bacterial pathogens. Environment International.; 146, 106183.

https://doi.org/10.1016/j.envint.2020.106183

##submission.downloads##

Objavljeno

2024-10-11

Broj časopisa

Rubrika

Scientific paper