The electrochemical performance of perovskite LaMnO3
DOI:
https://doi.org/10.62638/ZasMat1175Ključne reči:
Microwave, LaMnO3, perovskite, electrochemical performance, specific capacitanceApstrakt
Perovskite oxides have attracted as promising electrode materials for supercapacitors because of their unique structure, compositional flexibility, and inherent oxygen vacancy. In the present work, LaMnO3(LMO) perovskites are synthesised by microwave assisted chemical coprecipitation and followed by calcination at 750 ˚ C. The crystal structure and the presence of functional groups in LaMnO3 were studied through X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The surface morphology was characterized by field emission scanning electron microscopy (FESEM). Electrochemical performance of LMO electrodes is evaluated in 3M KOH and 3M NaOH electrolytes. The specific capacitance of the LMO electrode in 3M NaOH and 3M KOH electrolyte were calculated to be 557.76 F/g and 290.63 F/g at scan rate of 5mV/s. The enhancement in the specific capacitance of the LMO electrode in 3M NaOH can be attributed to the effective charge storage mechanism.
Reference
Zhang, S., Y. Li, and N. Pan. "Graphene based supercapacitor fabricated by vacuum filtration deposition." Journal of Power Sources 206 (2012): 476–482. https://doi.org/10.1016/j.jpowsour.2012.01.124.
Zheng, S., H. Xue, and H. Pang. "Supercapacitors based on metal coordination materials." Coordination Chemistry Reviews 373 (2018): 2–21. https://doi.org/10.1016/j.ccr.2017.07.002.
Yang, Y., D. Cheng, S. Chen, Y. Guan, and J. Xiong. "Construction of hierarchical NiCo2S4@Ni (OH)2 core-shell hybrid nanosheet arrays on Ni foam for high-performance aqueous hybrid supercapacitors." Electrochimica Acta 193 (2016): 116–127. https://doi.org/10.1016/j.electacta.2016.02.053.
Bose, S., T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, and J. H. Lee. "Carbon-based nanostructured materials and their composites as supercapacitor electrodes." Journal of Materials Chemistry 22 (2012): 767–784. https://doi.org/10.1039/c1jm14468e.
Yan, J., S. Li, B. Lan, Y. Wu, and P. S. Lee. "Rational design of nanostructured electrode materials toward multifunctional supercapacitors." Advanced Functional Materials 1902564 (2019): 1-35. https://doi.org/10.1002/adfm.201902564.
Candelaria, S. L., Y. Shao, W. Zhou, X. Li, J. Xiao, J. Zhang, Y. Wang, J. Liu, J. Li, and G. Cao. "Nanostructured carbon for energy storage and conversion." Nano Energy 1 (2012): 195–220. https://doi.org/10.1016/j.nanoen.2011.11.006.
Wang, Y., L. Zhang, H. Hou, W. Xu, G. Duan, S. He, K. Liu, and S. Jiang. "Recent progress in carbon-based materials for supercapacitor electrodes: a review." Journal of Materials Science 56 (2021): 173–200. https://doi.org/10.1007/s10853-020-05157-6.
Liu, Y., Z. Wang, Y. Zhong, X. Xu, J. M. Veder, M. R. Rowles, M. Saunders, R. Ran, and Z. Shao. "Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-δ perovskite." Chemical Engineering Journal 390 (2020): 124645, 1-10. https://doi.org/10.1016/j.cej.2020.124645.
McDaniel, A. H., A. Ambrosini, E. N. Coker, J. E. Miller, W. C. Chueh, R. O. Hayre, and J. Tong. "Nonstoichiometric perovskite oxides for solar thermochemical H2 and CO production." Energy Procedia 49 (2014): 2009–2018. https://doi.org/10.1016/j.egypro.2014.03.213.
Wang, J., Y. Gao, D. Chen, J. Liu, Z. Zhang, Z. Shao, and F. Ciucci. "Water splitting with an enhanced bifunctional double perovskite." ACS Catalysis 8, no. 1 (2017): 364–371. https://doi.org/10.1021/acscatal.7b02650.
Liu, Y., J. Dinh, M. O. Tade, and Z. Shao. "Design of perovskite oxides as anion-intercalation-type electrodes for supercapacitors: cation leaching effect." ACS Applied Materials and Interfaces 8, no. 36 (2016): 23774–23783. https://doi.org/10.1021/acsami.6b08634.
Tan, P., M. Liu, and Z. Shao. "Recent advances in perovskite oxides as electrode materials for nonaqueous lithium–oxygen batteries." Advanced Energy Materials 7 (2017): 1602674, 1-23. https://doi.org/10.1002/aenm.201602674.
Yamada, Y., and Y. Kanemitsu. "Photoluminescence spectra of perovskite oxide semiconductors." Journal of Luminescence 133 (2013): 30–34. https://doi.org/10.1016/j.jlumin.2011.12.037.
Rao, C. N. R. "Perovskite oxides and high-temperature superconductivity." Ferroelectrics 102 (1990): 297–308. https://doi.org/10.1080/00150199008221489.
Arjun, N., G. Pan, and T. C. K. Yang. "The exploration of lanthanum-based perovskites and their complementary electrolytes for the supercapacitor applications." Results in Physics 7 (2017): 920–926. https://doi.org/10.1016/j.rinp.2017.02.013.
Mefford, J. T., W. G. Hardin, S. Dai, K. P. Johnston, and K. J. Stevenson. "Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes." Nature Materials 13 (2014): 726–732. https://doi.org/10.1038/NMAT4000.
Zhu, J., H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, and J. Li. "Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis." ACS Catalysis 4 (2014): 2917–2940. https://doi.org/10.1021/cs500606g.
Galasso, F. Perovskites and High Tc Superconductors. Routledge, New York, 1990.
Hu, J., J. Ma, L. Wang, H. Huang, and L. Ma. "Preparation, characterization and photocatalytic activity of co-doped LaMnO3/graphene composites." Powder Technology 254 (2014): 556-562. https://doi.org/10.1016/j.powtec.2014.01.071.
Maheswari, N., and G. Muralidharan. "Supercapacitor behaviour of cerium oxide nanoparticles in neutral aqueous electrolytes." Energy and Fuels 29, no. 12 (2015): 8246–8253. https://doi.org/10.1021/acs.energyfuels.5b02144.
Lundberg, D., D. Warmińska, A. Fuchs, and I. Persson. "On the relationship between the structural and volumetric properties of solvated metal ions in O-donor solvents using new structural data in amide solvents." Physical Chemistry Chemical Physics 20 (2018): 14525-14536. https://doi.org/10.1039/c8cp01310h.
Gao, P., P. Metz, T. Hey, Y. Gong, D. Liu, D. D. Edwards, J. Y. Howe, R. Huang, and S. T. Misture. "The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets." Nature Communications 8 (2017): 14559. https://doi.org/10.1038/ncomms14559.