Efekti Desulfotomaculum sp na korozijsko ponašanje mekog čelika i aluminijuma u morskoj vodi
DOI:
https://doi.org/10.5937/zasmat2302190IKljučne reči:
mikrobiološki uticaja na koroziju, stopu korozije, potencijal elektroda, SRB, pasivnost, metalApstrakt
Mikrobiološki uticaj na koroziju mekog čelika i aluminijuma u morskoj vodi (SV) prouzrokovane bakterijom za smanjenje sulfata (SRB ), istražena je Desulfotomaculum SP. Stope korozije procenjene su u intervalima od deset dana u periodu od šezdeset dana koriste i gravimetrijske i elektrohemijske metode. Rezultati su pokazali da se stopa korozije smanjila sa vremenom izlaganja nakon početnog povećanja. Plot potencijala elektroda (EP) sa vremenom izloženosti prikazuje smanjenje kao otpor porastao zbog korozije koji se formira na površini metala. Aluminijum je zabiležio maksimalnu redukciju EP (-0,85 MV) nakon 60 dana inkubacije, sa početnim potencijalom od -0,53 mV nakon 10 dana. to je više negativnije, to je veća tendencija da formiraju jone i samim tim da korodiraju. Prosečna stopa korozije mekog čelika i aluminijuma u medijima u prisustvu SRB-a bila je 4-puta više u poređenju na medije bez Desulfotomaculum Sp.Reference
Akpofure, R.R. (2012) Microbiologically influenced corrosion of S45C mild steel in cassava mill effluent. Research Journal in Engineering and Applied Science, 1(5): 284-290
Beech, I.B., Sunner, J. (2004) Biocorrosion: Towards understanding interactions between biofilms and metals.Current Opinion in Biotechnology, 15(3): 181-186
https://doi.org/10.1016/j.copbio.2004.05.001
Cetin, D., Aksu, M.L. (2009) Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp.Corrosion Science, 51(8): 1584-1588
https://doi.org/10.1016/j.corsci.2009.04.001
Chen, L., Wei, B., Xu, X. (2021) Effect of sulfate-reducing bacteria (SRB) on the corrosion of buried pipe steel in acidic soil solution.Coatings, 11(625): 2-14
https://doi.org/10.3390/coatings11060625
Crod-Ruwisch, R. (2000) Microbially influenced corrosion of steel. in: Lovely D.R. [ed.] Environmental Microbe-Metal Interactions, Washington: ASM Press, 159-173
https://doi.org/10.1128/9781555818098.ch7
Ilhan-Sungur, E., Cansever, N., Cotuk, A. (2007) Microbial corrosion of galvanized steel by a freshwater strain of sulfate reducing bacteria (Desulfovibrio sp.).Corrosion Science, 49(3): 1097-1109
https://doi.org/10.1016/j.corsci.2006.05.050
Imo, E.O., Orji, J.C., Nweke, C.O. (2018) Influence of Aspergillus fumigatus on corrosion behavior of mild steel and aluminum.International Journal of Microbiology and Biotechnology Researc, 6: 61-69
Ines, T.E., Fonseca, M., Jose, F., Ana, R.L., Valter, L.R. (1997) Biocorrosion of mild steel by SRB: Electrochemical studies.Journal of Brazil Chemical Society, 8(2): 131-135
https://doi.org/10.1590/S0103-50531997000200008
Jin, X., Cheng, S., Maocheng, Y., Fuhui, W. (2012) Effects of sulfate reducing bacteria on corrosion of carbon steel Q235 in soil-extract solution.International Journal of Electrochemistry. Sci, 7: 11281-11296
https://doi.org/10.1016/S1452-3981(23)16944-6
Jones, D.A., Amy, P.S. (2002) A thermodynamic interpretation of microbiologically influenced corrosion.Corrosio, 58(8): 638-645
https://doi.org/10.5006/1.3287692
Little, B., Ray, R. (2002) A prospective on corrosion inhibition by biofilms.Corrosion, 58(5): 424-428
https://doi.org/10.5006/1.3277632
Manafi, Z., Hashemi, M., Abdollahi, H., Gregory, J.O. (2013) Biocorrosion of water pipeline by sulphatereducing bacteria in a mining environment.Africa Journal of Biotechnology, 12(46): 6504-6516
https://doi.org/10.5897/AJB11.3250
Mardhiah, I.N., Noor, N.Y., Arman, A., Rosilawati, M.R., Ahmad, S.A.R. (2014) The effect of pH and temperature on corrosion of steel subject to sulfate-reducing bacteria.Journal of Environmental Science and Technology, 7(4): 209-217
https://doi.org/10.3923/jest.2014.209.217
Mohini, P., Harshida, A.G., Natarajan, A. (2022) Isolation and characterization of genus desulfotomaculum. in: Practical Handbook on Agricultural Microbiology., Spring Protocols Handbooks
Oguzie, E.E., Oguzie, K.L., Akalezi, C.O., Udeze, I.O., Ogbulie, J.N., Njoku, V.O. (2013) Natural products for materials protection: Corrosion and microbial growth inhibition using capsicum frutescens biomass extraction.ACS Sustainable Chemistry & Engineering, 1(2): 214-225
https://doi.org/10.1021/sc300145k
Oliver, J.H. (2003) Handbook of water and wastewater microbiology. Academic press, 795-796; Edited by Duncan Mara and Nigel Horan
Osarolube, E., Owate, I.O., Oforka, N.C. (2008) Corrosion behavior of mild and high carbon steels in various acidic media.Scientific Research and Essay, 3(6): 224-228
Ovri, J.E.O., Okeahialam, S.I., Onyemaobi, O.O. (2013) Microbial corrosion of mild and medium carbon steels.Journal of Engineering Science and Technology, 8(5): 639-653
Salgar-Chaparro, S.J., Lepkova, K., Pojtanabuntoeng, T., Darwin, A., Machuca, L.L. (2020) Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness.Applied and Environmental Microbiology, 86(7): 31980429-31980429
https://doi.org/10.1128/AEM.02885-19
Tran, T.T.T., Kannoorpatti, K., Padovan, A.A., Thennadil, S. (2021) Sulphate-reducing bacteria's response to extreme pH environments and the effect of their activities on microbial corrosion.Material Science PLoS ONE, 16(5): e0251524-e0251524
https://doi.org/10.3390/app11052201
Videla, H.A. (2005) Microbiologically influenced corrosion. Microbiology, 170-180
Wang, D., Xu, J., Wang, J., Hu, W. (2021) Preparation and corrosion resistance of polyaspartic acid-zinc self-assembled film on carbon steel surface.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608: 125615-125615
##submission.downloads##
Objavljeno
Broj časopisa
Rubrika
Licenca
Sva prava zadržana (c) 2023 CC BY 4.0 by Authors
Ovaj rad je pod Creative Commons Autorstvo 4.0 Internacionalna licenca.