Antimicrobial properties of copper and its alloys through the prism of the current SARS CoV-2 pandemic

Authors

  • Milica Zdravković University of Belgrade, Technical Faculty, Bor, Serbia Author
  • Jovanović Sanja Milutinović Special Hospital for Non-specific Lung Deseases "Sokobanja", Sokobanja Author

DOI:

https://doi.org/10.5937/zasmat2104297M

Keywords:

biocidal properties, copper, contact killing, microbes, SARS CoV-2

Abstract

Copper has long been known as a metal with outstanding antimicrobial properties. Although ancient healers were not familiar with the mechanisms of its influence on microorganisms, they had empirically established its effectiveness in sterilizing drinking water, disinfecting wounds, treating skin diseases, various infections and other maladies. Recently, there has been renewed interest in investigating copper and its alloys as possible materials that can limit the spread of bacteria and viruses, given that humanity is often facing various local epidemics, and rarely pandemics, as ongoing Corona virus, SARS CoV-2, first detected in March 2020. This paper reviews the recent literature in the research field of antimicrobial properties of metallic copper, its alloys and other copper - based materials, with the aim to promote their future implementation on contact surfaces, primarily in hospitals and institutions with a high frequency of people where the probability of spreading infection is increased.

References

Airey, P., Verran, J. (2007) Potential use of copper as a hygienic surface: Problems associated with cumulative soiling and cleaning.Journal of Hospital Infection, 67(3), 272-278

https://doi.org/10.1016/j.jhin.2007.09.002

Arab, S.M. (2017) Medicine in ancient Egypt. Arab World Books, (https://www.arabworldbooks.com/ en/e-zine/medicine-in-ancient-egypt-part-3-of-3, 15.03.2021

Baureder, M., Reimann, R., Hederstedt, L. (2012) Contribution of catalase to hydrogen peroxide resistance in Enterococcus faecalis.FEMS Microbiology Letters, 331(2), 160-164

https://doi.org/10.1111/j.1574-6968.2012.02567.x

Borkow, G., Gabbay, J. (2005) Copper as a biocidal tool.Current Medicinal Chemistry, 12(18), 2163-2175

https://doi.org/10.2174/0929867054637617

Borkow, G., Zhou, S.S., Page, T., Gabbay, J. (2010) A novel anti-influenza copper oxide containing respiratory face mask.PLoS One, 5(6), e11295

https://doi.org/10.1371/journal.pone.0011295

Casey, A.L., Adams, D., Karpanen, T.J., Lambert, P.A., Cookson, B.D., Nightingale, P., Miruszenko, L., Shillam, R., Christian, P., Elliott, T.S.J. (2010) Role of copper in reducing hospital environment contamination.Journal of Hospital Infection, 74(1), 72-77

https://doi.org/10.1016/j.jhin.2009.08.018

Cooksey, D.A. (1994) Molecular mechanisms of copper resistance and accumulation in bacteria.FEMS Microbiology Reviews, 14(4), 381-386

https://doi.org/10.1111/j.1574-6976.1994.tb00112.x

Cortes, A.A., Zuñiga, J.M. (2020) The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review.Diagnostic Microbiology and Infectious Disease, 98(4), 115176

https://doi.org/10.1016/j.diagmicrobio.2020.115176

Dancer, S.J. (2008) Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: The case for hospital cleaning.Lancet Infectious Diseases, 8(2), 101-113

https://doi.org/10.1016/S1473-3099(07)70241-4

Diaz-Visurraga, J., Gutiérrez, C., Plessing, C., Garcia, A. (2012) Metal nanostructures as antibacterial agents. in: Méndez-Vilas A. [ed.] Science against microbial pathogens: communicating current research and technological advances, Badajoz, Spain: Formatex, 210-218

Dick, R.J., Wray, J.A., Johnston, H.N. (1973) A literature and technology search on the bacteriostatic and sanitizing properties of copper and copper alloy surfaces. Columbus: Battelle Columbus Laboratories

Dollwet, H.H.A., Sorenson, J.R.J. (1985) Historic uses of copper compounds in medicine.Trace Elements in Medicine, 2(2), 80-87

Elguindi, J., Moffitt, S., Hasman, H., Andrade, C., Raghavan, S., Rensing, C. (2011) Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-resistant bacteria.Applied Microbiology and Biotechnology, 89(6), 1963-1970

https://doi.org/10.1007/s00253-010-2980-x

Faundez, G., Troncoso, M., Navarrete, P., Figueroa, G. (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni.BMC Microbiol, 4(19), 1-7

https://doi.org/10.1186/1471-2180-4-19

Grass, G., Rensing, C., Solioz, M. (2011) Metallic copper as an antimicrobial surface.Applied and Environmental Microbiology, 77(5), 1541-1547

https://doi.org/10.1128/AEM.02766-10

Grønbaek, M., Becker, U., Johansen, D., Gottschau, A., Schnohr, P., Hein, H.O., Jensen, G.B., Sorensen, T.I.A. (2000) Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer.Annals of Internal Medicine, 133(6), 411-419

https://doi.org/10.7326/0003-4819-133-6-200009190-00008

Hang, X., Peng, H., Song, H., Qi, Z., Miao, X., Xu, W. (2015) Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro.Journal of Virological Methods, 222, 150-157

https://doi.org/10.1016/j.jviromet.2015.06.010

Herman, H., Sulit, R.A. (1993) Thermal spray coatings, welding, brazing, and soldering. in: Olson D.L., Siewert T.A., Liu S., Edwards G.R. [ed.] ASM Handbook, Materials Park, Ohio, Vol. 6

https://doi.org/10.31399/asm.hb.v06.a0001462

Kampf, G., Todt, D., Pfaender, S., Steinmann, E. (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents.Journal of Hospital Infection, 104(3), 246-251

https://doi.org/10.1016/j.jhin.2020.01.022

Kawakami, H., Yoshida, K., Nishida, Y., Kikuchi, Y., Sato, Y. (2008) Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801:2000.ISIJ International, 48(9), 1299-1304

https://doi.org/10.2355/isijinternational.48.1299

Konieczny, J., Rdzawski, Z. (2012) Antibacterial properties of copper and its alloys.Archives of Materials Science and Engineering, 56(2), 53-60

Kramer, A., Schwebke, I., Kampf, G. (2006) How long do nosocomial pathogens persist on inanimate surfaces?: A systematic review.BMC Infectious Diseases, 6(1), 130-138

https://doi.org/10.1186/1471-2334-6-130

Kuhn, P.J. (1983) Doorknobs: A source of nosocomial infection?.Diagnostic Medicine, 1-2

Kusumaningrum, H.D., Riboldi, G., Hazeleger, W.C., Beumer, R.R. (2003) Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods.International Journal of Food Microbiology, 85(3), 227-236

https://doi.org/10.1016/S0168-1605(02)00540-8

Lamichhane, J.R., Osdaghi, E., Behlau, F., Köhl, J., Jones, J.B., Aubertot, J. (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture: A review.Agronomy for Sustainable Development, 38(3), 28

https://doi.org/10.1007/s13593-018-0503-9

Lewis, A., Keevil, C.W. (2004) Antibacterial properties of alloys and its alloys in HVAC&R systems. New York: International Copper Association

Liu, X., Sang, Y., Yin, H., Lin, A., Guo, Z., Liu, Z. (2018) Progress in the mechanism and kinetics of fenton reaction.Ecology & Environmental Sciences, 3(1), 10-15

https://doi.org/10.15406/mojes.2018.03.00060

Marais, F., Mehtar, S., Chalkley, L. (2010) Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility.Journal of Hospital Infection, 74(1), 80-82

https://doi.org/10.1016/j.jhin.2009.07.010

Mathews, S., Hans, M., Mücklich, F., Solioz, M. (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions.Applied and Environmental Microbiology, 79(8), 2605-2611

https://doi.org/10.1128/AEM.03608-12

Mehtar, S., Wiid, I., Todorov, S.D. (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study.Journal of Hospital Infection, 68(1), 45-51

https://doi.org/10.1016/j.jhin.2007.10.009

Michels, H.T., Noyce, J.O., Keevil, C.W. (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureuschallenged antimicrobial materials containing silver and copper.Letters in Applied Microbiology, 49(2), 191-195

https://doi.org/10.1111/j.1472-765X.2009.02637.x

Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., Nies, D.H. (2010) Survival of bacteria on metallic copper surfaces in a hospital trial.Applied Microbiology and Biotechnology, 87(5), 1875-1879

https://doi.org/10.1007/s00253-010-2640-1

Molteni, C., Abicht, H.K., Solioz, M. (2010) Killing of bacteria by copper surfaces involves dissolved copper.Applied and Environmental Microbiology, 76(12), 4099-4101

https://doi.org/10.1128/AEM.00424-10

Montero, D.A., Arellano, C., Pardo, M., Vera, R., Gálvez, R., Cifuentes, M., Berasain, M.A., Gómez, M., Ramírez, C., Vidal, R.M. (2019) Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities.Antimicrobial Resistance & Infection Control, 8(1), 1-10

https://doi.org/10.1186/s13756-018-0456-4

Nan, L., Liu, Y., Lü, M., Yang, K. (2008) Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy.Journal of Materials Science: Materials in Medicine, 19(9), 3057-3062

https://doi.org/10.1007/s10856-008-3444-z

Nies, D.H. (1999) Microbial heavy-metal resistance.Applied Microbiology and Biotechnology, 51(6), 730-750

https://doi.org/10.1007/s002530051457

Noyce, J.O., Michels, H., Keevil, C.W. (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment.Journal of Hospital Infection, 63, 289-297

https://doi.org/10.1016/j.jhin.2005.12.008

Noyce, J.O., Michels, H., Keevil, C.W. (2007) Inactivation of influenza a virus on copper versus stainless steel surfaces.Applied and Environmental Microbiology, 73(8), 2748-2750

https://doi.org/10.1128/AEM.01139-06

Noyce, J.O., Michels, H., Keevil, C.W. (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing.Applied and Environmental Microbiology, 72(6), 4239-4244

https://doi.org/10.1128/AEM.02532-05

Nunn, J.F. (2003) Ancient Egyptian medicine. London: The British Museum Press

Pham, N.A., Xing, G., Miller, C.J., Waite, D.T. (2013) Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production.Journal of Catalysis, 301, 54-64

https://doi.org/10.1016/j.jcat.2013.01.025

Quaranta, D., Krans, T., Santo, C., Elowsky, C.G., Domaille, D.W., Chang, C.J., Grass, G. (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.Applied and Environmental Microbiology, 77, 416-426

https://doi.org/10.1128/AEM.01704-10

Sagripanti, J.L., Routson, L.B., Lytle, C.D. (1993) Virus inactivation by copper or iron ions alone and in the presence of peroxide.Applied and Environmental Microbiology, 59(12), 4374-4376

https://doi.org/10.1128/aem.59.12.4374-4376.1993

Santo, C.E., Morais, P.V., Grass, G. (2010) Grass (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces.Applied and Environmental Microbiology, 76, 1341-1348

https://doi.org/10.1128/AEM.01952-09

Santo, C.E., Lam, E.W., Elowsky, C.G., Quaranta, D., Domaille, D.W., Chang, C.J., Grass, G. (2011) Bacterial killing by dry metallic copper surfaces.Applied and Environmental Microbiology, 77(3), 794-802

https://doi.org/10.1128/AEM.01599-10

Santo, C.E., Taudte, N., Nies, D.H., Grass, G. (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces.Applied and Environmental Microbiology, 74(4), 977-986

https://doi.org/10.1128/AEM.01938-07

Sudha, V.P., Ganesan, S., Pazhani, G.P., Ramamurthy, T., Nair, G.B., Venkatasubramanian, P. (2012) Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria.Journal of Health, Population and Nutrition, 30(1), 17-21

https://doi.org/10.3329/jhpn.v30i1.11271

Suh, I., Shaten, J., Cutler, J.A., Kuller, L.H. (1992) Alcohol use and mortality from coronary heart disease: The role of high-density lipoprotein cholesterol.Annals of Internal Medicine, 116(11), 881-887

https://doi.org/10.7326/0003-4819-116-11-881

Thurman, R.B., Gerba, C.P. (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses.Critical Reviews in Environmental Control, 18(4), 295-315

https://doi.org/10.1080/10643388909388351

Tylecote, R.F. (1992) History of metallurgy. London: Maney Publishing, 2nd Ed

van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., de Wit, E., Munster, V.J. (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.New England Journal of Medicine, 382(16), 1564-1567

https://doi.org/10.1056/NEJMc2004973

Walusinski, O. (2018) The scientific illusion of Victor Burq (1822-1884).European Neurology, 79(3-4), 135-149

https://doi.org/10.1159/000487667

Warnes, S.L., Little, Z.R., Keevil, C. (2015) Human Coronavirus 229E remains infectious on common touch surface materials.MBio, 6(6), 1697-01615

https://doi.org/10.1128/mBio.01697-15

Wilks, S.A., Michels, H., Keevil, C.W. (2005) The survival of Escherichia coli O157 on a range of metal surfaces.International Journal of Food Microbiology, 105, 445-454

https://doi.org/10.1016/j.ijfoodmicro.2005.04.021

Zhao, Z.H., Sakagami, Y., Osaka, T. (1998) Toxicity of hydrogen peroxide produced by electroplated coatings to pathogenic bacteria.Canadian Journal of Microbiology, 44(5), 441-447

https://doi.org/10.1139/w98-030

Downloads

Published

15-12-2021

Issue

Section

Articles