Antimicrobial properties of copper and its alloys through the prism of the current SARS CoV-2 pandemic
DOI:
https://doi.org/10.5937/zasmat2104297MKeywords:
biocidal properties, copper, contact killing, microbes, SARS CoV-2Abstract
Copper has long been known as a metal with outstanding antimicrobial properties. Although ancient healers were not familiar with the mechanisms of its influence on microorganisms, they had empirically established its effectiveness in sterilizing drinking water, disinfecting wounds, treating skin diseases, various infections and other maladies. Recently, there has been renewed interest in investigating copper and its alloys as possible materials that can limit the spread of bacteria and viruses, given that humanity is often facing various local epidemics, and rarely pandemics, as ongoing Corona virus, SARS CoV-2, first detected in March 2020. This paper reviews the recent literature in the research field of antimicrobial properties of metallic copper, its alloys and other copper - based materials, with the aim to promote their future implementation on contact surfaces, primarily in hospitals and institutions with a high frequency of people where the probability of spreading infection is increased.References
Airey, P., Verran, J. (2007) Potential use of copper as a hygienic surface: Problems associated with cumulative soiling and cleaning.Journal of Hospital Infection, 67(3), 272-278
https://doi.org/10.1016/j.jhin.2007.09.002
Arab, S.M. (2017) Medicine in ancient Egypt. Arab World Books, (https://www.arabworldbooks.com/ en/e-zine/medicine-in-ancient-egypt-part-3-of-3, 15.03.2021
Baureder, M., Reimann, R., Hederstedt, L. (2012) Contribution of catalase to hydrogen peroxide resistance in Enterococcus faecalis.FEMS Microbiology Letters, 331(2), 160-164
https://doi.org/10.1111/j.1574-6968.2012.02567.x
Borkow, G., Gabbay, J. (2005) Copper as a biocidal tool.Current Medicinal Chemistry, 12(18), 2163-2175
https://doi.org/10.2174/0929867054637617
Borkow, G., Zhou, S.S., Page, T., Gabbay, J. (2010) A novel anti-influenza copper oxide containing respiratory face mask.PLoS One, 5(6), e11295
https://doi.org/10.1371/journal.pone.0011295
Casey, A.L., Adams, D., Karpanen, T.J., Lambert, P.A., Cookson, B.D., Nightingale, P., Miruszenko, L., Shillam, R., Christian, P., Elliott, T.S.J. (2010) Role of copper in reducing hospital environment contamination.Journal of Hospital Infection, 74(1), 72-77
https://doi.org/10.1016/j.jhin.2009.08.018
Cooksey, D.A. (1994) Molecular mechanisms of copper resistance and accumulation in bacteria.FEMS Microbiology Reviews, 14(4), 381-386
https://doi.org/10.1111/j.1574-6976.1994.tb00112.x
Cortes, A.A., Zuñiga, J.M. (2020) The use of copper to help prevent transmission of SARS-coronavirus and influenza viruses. A general review.Diagnostic Microbiology and Infectious Disease, 98(4), 115176
https://doi.org/10.1016/j.diagmicrobio.2020.115176
Dancer, S.J. (2008) Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: The case for hospital cleaning.Lancet Infectious Diseases, 8(2), 101-113
https://doi.org/10.1016/S1473-3099(07)70241-4
Diaz-Visurraga, J., Gutiérrez, C., Plessing, C., Garcia, A. (2012) Metal nanostructures as antibacterial agents. in: Méndez-Vilas A. [ed.] Science against microbial pathogens: communicating current research and technological advances, Badajoz, Spain: Formatex, 210-218
Dick, R.J., Wray, J.A., Johnston, H.N. (1973) A literature and technology search on the bacteriostatic and sanitizing properties of copper and copper alloy surfaces. Columbus: Battelle Columbus Laboratories
Dollwet, H.H.A., Sorenson, J.R.J. (1985) Historic uses of copper compounds in medicine.Trace Elements in Medicine, 2(2), 80-87
Elguindi, J., Moffitt, S., Hasman, H., Andrade, C., Raghavan, S., Rensing, C. (2011) Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-resistant bacteria.Applied Microbiology and Biotechnology, 89(6), 1963-1970
https://doi.org/10.1007/s00253-010-2980-x
Faundez, G., Troncoso, M., Navarrete, P., Figueroa, G. (2004) Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni.BMC Microbiol, 4(19), 1-7
https://doi.org/10.1186/1471-2180-4-19
Grass, G., Rensing, C., Solioz, M. (2011) Metallic copper as an antimicrobial surface.Applied and Environmental Microbiology, 77(5), 1541-1547
https://doi.org/10.1128/AEM.02766-10
Grønbaek, M., Becker, U., Johansen, D., Gottschau, A., Schnohr, P., Hein, H.O., Jensen, G.B., Sorensen, T.I.A. (2000) Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer.Annals of Internal Medicine, 133(6), 411-419
https://doi.org/10.7326/0003-4819-133-6-200009190-00008
Hang, X., Peng, H., Song, H., Qi, Z., Miao, X., Xu, W. (2015) Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro.Journal of Virological Methods, 222, 150-157
https://doi.org/10.1016/j.jviromet.2015.06.010
Herman, H., Sulit, R.A. (1993) Thermal spray coatings, welding, brazing, and soldering. in: Olson D.L., Siewert T.A., Liu S., Edwards G.R. [ed.] ASM Handbook, Materials Park, Ohio, Vol. 6
https://doi.org/10.31399/asm.hb.v06.a0001462
Kampf, G., Todt, D., Pfaender, S., Steinmann, E. (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents.Journal of Hospital Infection, 104(3), 246-251
https://doi.org/10.1016/j.jhin.2020.01.022
Kawakami, H., Yoshida, K., Nishida, Y., Kikuchi, Y., Sato, Y. (2008) Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801:2000.ISIJ International, 48(9), 1299-1304
https://doi.org/10.2355/isijinternational.48.1299
Konieczny, J., Rdzawski, Z. (2012) Antibacterial properties of copper and its alloys.Archives of Materials Science and Engineering, 56(2), 53-60
Kramer, A., Schwebke, I., Kampf, G. (2006) How long do nosocomial pathogens persist on inanimate surfaces?: A systematic review.BMC Infectious Diseases, 6(1), 130-138
https://doi.org/10.1186/1471-2334-6-130
Kuhn, P.J. (1983) Doorknobs: A source of nosocomial infection?.Diagnostic Medicine, 1-2
Kusumaningrum, H.D., Riboldi, G., Hazeleger, W.C., Beumer, R.R. (2003) Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods.International Journal of Food Microbiology, 85(3), 227-236
https://doi.org/10.1016/S0168-1605(02)00540-8
Lamichhane, J.R., Osdaghi, E., Behlau, F., Köhl, J., Jones, J.B., Aubertot, J. (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture: A review.Agronomy for Sustainable Development, 38(3), 28
https://doi.org/10.1007/s13593-018-0503-9
Lewis, A., Keevil, C.W. (2004) Antibacterial properties of alloys and its alloys in HVAC&R systems. New York: International Copper Association
Liu, X., Sang, Y., Yin, H., Lin, A., Guo, Z., Liu, Z. (2018) Progress in the mechanism and kinetics of fenton reaction.Ecology & Environmental Sciences, 3(1), 10-15
https://doi.org/10.15406/mojes.2018.03.00060
Marais, F., Mehtar, S., Chalkley, L. (2010) Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility.Journal of Hospital Infection, 74(1), 80-82
https://doi.org/10.1016/j.jhin.2009.07.010
Mathews, S., Hans, M., Mücklich, F., Solioz, M. (2013) Contact killing of bacteria on copper is suppressed if bacterial-metal contact is prevented and is induced on iron by copper ions.Applied and Environmental Microbiology, 79(8), 2605-2611
https://doi.org/10.1128/AEM.03608-12
Mehtar, S., Wiid, I., Todorov, S.D. (2008) The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study.Journal of Hospital Infection, 68(1), 45-51
https://doi.org/10.1016/j.jhin.2007.10.009
Michels, H.T., Noyce, J.O., Keevil, C.W. (2009) Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureuschallenged antimicrobial materials containing silver and copper.Letters in Applied Microbiology, 49(2), 191-195
https://doi.org/10.1111/j.1472-765X.2009.02637.x
Mikolay, A., Huggett, S., Tikana, L., Grass, G., Braun, J., Nies, D.H. (2010) Survival of bacteria on metallic copper surfaces in a hospital trial.Applied Microbiology and Biotechnology, 87(5), 1875-1879
https://doi.org/10.1007/s00253-010-2640-1
Molteni, C., Abicht, H.K., Solioz, M. (2010) Killing of bacteria by copper surfaces involves dissolved copper.Applied and Environmental Microbiology, 76(12), 4099-4101
https://doi.org/10.1128/AEM.00424-10
Montero, D.A., Arellano, C., Pardo, M., Vera, R., Gálvez, R., Cifuentes, M., Berasain, M.A., Gómez, M., Ramírez, C., Vidal, R.M. (2019) Antimicrobial properties of a novel copper-based composite coating with potential for use in healthcare facilities.Antimicrobial Resistance & Infection Control, 8(1), 1-10
https://doi.org/10.1186/s13756-018-0456-4
Nan, L., Liu, Y., Lü, M., Yang, K. (2008) Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy.Journal of Materials Science: Materials in Medicine, 19(9), 3057-3062
https://doi.org/10.1007/s10856-008-3444-z
Nies, D.H. (1999) Microbial heavy-metal resistance.Applied Microbiology and Biotechnology, 51(6), 730-750
https://doi.org/10.1007/s002530051457
Noyce, J.O., Michels, H., Keevil, C.W. (2006) Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment.Journal of Hospital Infection, 63, 289-297
https://doi.org/10.1016/j.jhin.2005.12.008
Noyce, J.O., Michels, H., Keevil, C.W. (2007) Inactivation of influenza a virus on copper versus stainless steel surfaces.Applied and Environmental Microbiology, 73(8), 2748-2750
https://doi.org/10.1128/AEM.01139-06
Noyce, J.O., Michels, H., Keevil, C.W. (2006) Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing.Applied and Environmental Microbiology, 72(6), 4239-4244
https://doi.org/10.1128/AEM.02532-05
Nunn, J.F. (2003) Ancient Egyptian medicine. London: The British Museum Press
Pham, N.A., Xing, G., Miller, C.J., Waite, D.T. (2013) Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production.Journal of Catalysis, 301, 54-64
https://doi.org/10.1016/j.jcat.2013.01.025
Quaranta, D., Krans, T., Santo, C., Elowsky, C.G., Domaille, D.W., Chang, C.J., Grass, G. (2011) Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces.Applied and Environmental Microbiology, 77, 416-426
https://doi.org/10.1128/AEM.01704-10
Sagripanti, J.L., Routson, L.B., Lytle, C.D. (1993) Virus inactivation by copper or iron ions alone and in the presence of peroxide.Applied and Environmental Microbiology, 59(12), 4374-4376
https://doi.org/10.1128/aem.59.12.4374-4376.1993
Santo, C.E., Morais, P.V., Grass, G. (2010) Grass (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces.Applied and Environmental Microbiology, 76, 1341-1348
https://doi.org/10.1128/AEM.01952-09
Santo, C.E., Lam, E.W., Elowsky, C.G., Quaranta, D., Domaille, D.W., Chang, C.J., Grass, G. (2011) Bacterial killing by dry metallic copper surfaces.Applied and Environmental Microbiology, 77(3), 794-802
https://doi.org/10.1128/AEM.01599-10
Santo, C.E., Taudte, N., Nies, D.H., Grass, G. (2008) Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces.Applied and Environmental Microbiology, 74(4), 977-986
https://doi.org/10.1128/AEM.01938-07
Sudha, V.P., Ganesan, S., Pazhani, G.P., Ramamurthy, T., Nair, G.B., Venkatasubramanian, P. (2012) Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria.Journal of Health, Population and Nutrition, 30(1), 17-21
https://doi.org/10.3329/jhpn.v30i1.11271
Suh, I., Shaten, J., Cutler, J.A., Kuller, L.H. (1992) Alcohol use and mortality from coronary heart disease: The role of high-density lipoprotein cholesterol.Annals of Internal Medicine, 116(11), 881-887
https://doi.org/10.7326/0003-4819-116-11-881
Thurman, R.B., Gerba, C.P. (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses.Critical Reviews in Environmental Control, 18(4), 295-315
https://doi.org/10.1080/10643388909388351
Tylecote, R.F. (1992) History of metallurgy. London: Maney Publishing, 2nd Ed
van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., Tamin, A., Harcourt, J.L., Thornburg, N.J., Gerber, S.I., Lloyd-Smith, J.O., de Wit, E., Munster, V.J. (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.New England Journal of Medicine, 382(16), 1564-1567
https://doi.org/10.1056/NEJMc2004973
Walusinski, O. (2018) The scientific illusion of Victor Burq (1822-1884).European Neurology, 79(3-4), 135-149
https://doi.org/10.1159/000487667
Warnes, S.L., Little, Z.R., Keevil, C. (2015) Human Coronavirus 229E remains infectious on common touch surface materials.MBio, 6(6), 1697-01615
https://doi.org/10.1128/mBio.01697-15
Wilks, S.A., Michels, H., Keevil, C.W. (2005) The survival of Escherichia coli O157 on a range of metal surfaces.International Journal of Food Microbiology, 105, 445-454
https://doi.org/10.1016/j.ijfoodmicro.2005.04.021
Zhao, Z.H., Sakagami, Y., Osaka, T. (1998) Toxicity of hydrogen peroxide produced by electroplated coatings to pathogenic bacteria.Canadian Journal of Microbiology, 44(5), 441-447
Downloads
Published
Issue
Section
License
Copyright (c) 2021 CC BY 4.0 by Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.