Balancing of energy flows in a life cycle of thermal energy production from biogas

Authors

  • Slobodan Cvetković Ministarstvo zaštite životne sredine Republike Srbije, Beograd Author
  • Mirjana Kijevčanin University of Belgrade, Faculty of Technology and Metallurgy, Serbia Author

DOI:

https://doi.org/10.5937/zasmat2104269C

Keywords:

biogas, heat energy, life cycle, energy, energy efficiency

Abstract

Biogas is a promising source for energy production in future energy systems. In this paper, the energy flows in the life cycle of a real biogas plant (Mirotin-Vrbas) for thermal energy production were considered, starting from corn silage production, cow manure transport, process of anaerobic digestion and biogas production, to the use of solid and liquid digestate for production of crops. Four energy indicators were used to evaluate energy flows in this work. The obtained results showed that this biogas system has a positive energy balance of 62.418 GJ and an energy efficiency of 6,1, which indicates that in terms of substitution of fossil fuel consumption, this system for heat production is a good alternative.

References

(2006) Environmental management: Life cycle assessment - requirements and guidelines. International Organization for Standardization, ISO 14044

(2006) Environmental management - life cycle assessment - principles and framework. International Organization for Standardization, ISO 14040

(2018) Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources

Avcıoğlu, A.O., Dayıoğlu, M.A., Türker, U. (2019) Assessment of the energy potential of agricultural biomass residues in Turkey.Renewable Energy, 138, 610-619

https://doi.org/10.1016/j.renene.2019.01.053

Becker, C., Döhler, H., Eckel, H., Fröba, N., Georgieva, T., Grube, J., Hartmann, S., Hauptmann, A., Jäger, P., Klages, S., Krötzsch, S., Sauer, N., Nakaki, S., Niebaum, A., Roth, U., Wirth, B., Wulf, S., Xin, Y. (2007) Empirical values for biogas. in: Empirical values for biogas, Darmstadt, Germany, 1st ed

Berglund, M., Börjesson, P. (2006) Assessment of energy performance in the life-cycle of biogas production.Biomass and Bioenergy, 30(3), 254-266

https://doi.org/10.1016/j.biombioe.2005.11.011

Cvetković, S., Kaluđerović-Radoičić, T., Vukadinović, B., Kijevčanin, M. (2016) A life cycle energy assessment for biogas energy in Serbia.Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(20), 3095-3102

https://doi.org/10.1080/15567036.2015.1135207

Gerin, P.A., Vliegen, F., Jossart, J.M. (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion.Bioresource Technology, 99(7), 2620-2627

https://doi.org/10.1016/j.biortech.2007.04.049

Hagen, A., Langnickel, H., Sun, X. (2019) Operation of solid oxide fuel cells with alternative hydrogen carriers.International Journal of Hydrogen Energy, 44(33), 18382-18392

https://doi.org/10.1016/j.ijhydene.2019.05.065

Havukainen, J.V., Uusitaloa, V., Niskanen,, Kapustina, V., Horttanai, M. (2014) Evaluation of methods for estimating energy performance of biogas production.Renew. Energy, 66, 232-240

https://doi.org/10.1016/j.renene.2013.12.011

Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V.K., Vijay, V., Thakur, I.S., Kamyab, H., Nguyen, D.D., Kumar, A. (2020) Advances in biogas valorization and utilization systems: A comprehensive review.Journal of Cleaner Production, 273, 123052

https://doi.org/10.1016/j.jclepro.2020.123052

KTBL (2009) Business planning agriculture 2008/09 -data for business planning in agriculture. Darmstadt, Germany: Association for Technology and Structures in Agriculture (KTBL)

KTBL (2008) Diesel fuel consumption during agricultural processes. Association for Technology and Structures in Agriculture

Lootsma, A., Raussen, T. (2008) Current practise for pre-treatment and utilization of digestate. Witzenhausen, Germany: Kasseler Abfall - und Bioenergieforum

Martinov, M., Kovacs, K., Đatkov, Đ. (2012) Biogas technology. Novi Sad: Faculty of Technical Science

Mortimer, N.D. (1991) Energy analysis of renewable energy sources.Energy Policy, 19(4), 374-385

https://doi.org/10.1016/0301-4215(91)90060-2

Pöschl, M., Ward, S., Owende, P. (2010) Evaluation of energy efficiency of various biogas production and utilization pathways.Applied Energy, 87(11), 3305-3321

https://doi.org/10.1016/j.apenergy.2010.05.011

Prade, T., Svensson, S.E., Mattsson, J.E. (2012) Energy balances for biogas and solid biofuel production from industrial hemp.Biomass Bioenergy, 40, 36-52

https://doi.org/10.1016/j.biombioe.2012.01.045

Salter, A., Banks, C.J. (2009) Establishing an energy balance for crop-based digestion.Water Science and Technology, 59(6), 1053-1060

https://doi.org/10.2166/wst.2009.048

Seppälä, M., Paavola, T., Lehtomäki, A., Pakarinen, O., Rintala, J. (2008) Biogas from energy crops-optimal pre-treatments and storage, co-digestion and energy balance in boreal conditions.Water Sci. Technol, 58, 1857-1863

https://doi.org/10.2166/wst.2008.503

Sun, Q., Li, H., Yan, J., Liu, L., Yu, Z., Yu, X. (2015) Selection of appropriate biogas upgrading technology: A review of biogas cleaning, upgrading and utilisation.Renewable and Sustainable Energy Reviews, 51, 521-532

https://doi.org/10.1016/j.rser.2015.06.029

Uellendahl, H., Wang, G., Møller, H.B., Jørgensen, U., Skiadas, I.V., Gavala, H.N., Ahring, B.K. (2008) Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation.Water Science and Technology, 58(9), 1841-1847

https://doi.org/10.2166/wst.2008.504

University of Vienna (2007) An overall energy balance for energy production taking into account energy inputs associated with farming. Cropgen

Welfle, A., Thornley, P., Röder, M. (2020) A review of the role of bioenergy modelling in renewable energy research & policy development.Biomass and Bioenergy, 136, 105542

https://doi.org/10.1016/j.biombioe.2020.105542

Downloads

Published

15-12-2021

Issue

Section

Articles