Oxygen reduction reaction on electrochemically deposited sub-monolayers and ultra-thin layers of Pt on (Nb-Ti)2AlC substrate
DOI:
https://doi.org/10.5937/zasmat2202153PKeywords:
Platinum electrodeposition, oxygen reduction, acid solutionAbstract
Catalytic activity towards the oxygen reduction reaction (ORR) in 0.5 M H2SO4 was investigated at sub-monolayers and ultra-thin layers (corresponding to 10, 30 and 100 monolayers, (MLs)) of Pt electrochemically deposited on (Nb-Ti)2AlC substrate. Electrochemical deposition of Pt layers on (Nb-Ti)2AlC substrate was achieved from the solution containing 3 mM K2PtCl4 + 0.5 M NaCl (pH 4) under the conditions of convective diffusion (RPM = 400) using linear sweep voltammetry (LSV) at a sweep rate of 2 mV s-1 , by determining limiting potential for deposition of each Pt sample from the QPt vs. E curves. The Pt samples were characterized X-ray photoelectron spectroscopy (XPS). XPS analysis showed that practically the whole surface of (Nb-Ti)2AlC substrate is covered with homogeneous layer of Pt, while Pt ion reduction was complete to metallic form - Pt(0) valence state. Then oxygen reduction was studied at rotating disc electrode by cyclic voltammetry and linear sweep voltammetry. Two different Tafel slopes were observed, one close to 60 mV dec-1 in low current densities region and second one ~ 120 mV dec-1 in high current densities region. This novel catalyst exhibited higher activity in comparison to carbon supported one, in terms of mass activity - kinetic current density normalized to Pt loading.References
Aricò, A.S., Shukla, A.K., Kim, H., Park, S., Min, M., Antonucci, V. (2001) An XPS Study on Oxidation States of Pt and Its Alloys with Co and Cr and Its Relevance to Electroreduction of Oxygen.Applied Surface Science, 172(1-2): 33-40
https://doi.org/10.1016/S0169-4332(00)00831-X
Bard, A.J., Faulken, L.R. (2001) Electrochemical Methods: Fundamental and Applications. New York: Wiley, 2nd ed
Brankovic, S.R., Wang, J.X., Adžić, R.R. (2001) Metal Monolayer Deposition by Replacement of Metal Adlayers on Electrode Surfaces.Surf. Sci., 474(1-3): L173-L179
https://doi.org/10.1016/S0039-6028(00)01103-1
Brankovic, S.R., Mcbreen, J., Adžić, R.R. (2001) Spontaneous Deposition of Pt on the Ru(0001) Surface.J. Electroanal. Chem, 503(1-2): 99-104
https://doi.org/10.1016/S0022-0728(01)00349-7
Chapuzet, J.M., Lasia, A., Lessard, J. (1998) in: Lipkowski J.; Ross P.N. [ed.] Electrocatalysis, Wiley-VCH, 155-155
Elezovic, N.R., Zabinski, P., Ercius, P., Wytrwal, M., Radmilovic, V.R., Lačnjevac, U.Č., Krstajic, N.V. (2017) High Surface Area Pd Nanocatalyst on Core-Shell Tungsten Based Support as a Beneficial Catalyst for Low Temperature Fuel Cells Application.Electrochimica Acta, 247: 674-684
https://doi.org/10.1016/j.electacta.2017.07.066
Elezović, N.R., Branković, G., Zabinski, P., Marzec, M., Jović, V.D. (2020) Ultra-Thin Layers of Iridium Electrodeposited on Ti2AlC Support as Cost Effective Catalysts for Hydrogen Production by Water Electrolysis.J. Electroanal. Chem., 878: 114575
https://doi.org/10.1016/j.jelechem.2020.114575
Elezović, N.R., Krstajić-Pajić, M.N., Jović, V.D. (2020) Sub-monolayers of iridium electrodeposited on Ti2AlC substrate as catalysts for hydrogen evolution reaction in sulfuric acid solution.Zaštita materijala, vol. 61, br. 3, str. 181-191
https://doi.org/10.5937/zasmat2003181E
Gasteiger, H.A., Kocha, S.S., Sompalli, B., Wagner, F.T. (2005) Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs.Applied Catalysis B: Environmental, 56(1-2): 9-35
https://doi.org/10.1016/j.apcatb.2004.06.021
Gregory, A.J., Levason, W., Noftle, R.E., Le, P.R., Pletcher, D. (1995) Studies of Platinum Electroplating Baths Part III: The Electrochemistry of Pt(NH3)4 - x(H2O)2+2 and PtCl4 - x(H2O)(2 - x)-x.J. Electroanal. Chem., 399(1-2): 105-113
https://doi.org/10.1016/0022-0728(95)04283-0
Huang, K., Sasaki, K., Adzic, R.R., Xing, Y. (2012) Increasing Pt Oxygen Reduction Reaction Activity and Durability with a Carbon-doped TiO2 Nanocoating Catalyst Support.J. Mater. Chem., 22(33): 16824-16832
https://doi.org/10.1039/c2jm32234j
Jin, Y.D., Shen, Y., Dong, S.J. (2004) Electrochemical Design of Ultrathin Platinum-Coated Gold Nanoparticle Monolayer Films as a Novel Nanostructured Electrocatalyst for Oxygen Reduction.J. Phys. Chem. B, 108(24): 8142-8147
https://doi.org/10.1021/jp0375517
Jovic, V.D., Jovic, B.M., Gupta, S., El-Raghy, T., Barsoum, M.W. (2006) Corrosion Behavior of Select MAX Phases in NaOH, HCl and H2SO4.Corrosion Science, 48(12): 4274-4282
https://doi.org/10.1016/j.corsci.2006.04.005
Jović, B.M., Jović, V.D., Lačnjevac, U.Č., Stevanović, S.I., Kovač, J., Radović, M., Krstajić, N.V. (2016) Ru Layers Electrodeposited onto Highly Stable Ti2AlC Substrates as Cathodes for Hydrogen Evolution in Sulfuric Acid Solutions.J. Electroanal. Chem., 766: 78-86
https://doi.org/10.1016/j.jelechem.2016.01.038
Jović, B.M., Jović, V.D., Branković, G., Radović, M., Krstajić, N.V. (2017) Hydrogen Evolution in Acid Solution at Pd Electrodeposited Onto Ti2AlC.Electrochim. Acta, 224: 571-584
https://doi.org/10.1016/j.electacta.2016.12.015
Kim, J., Jung, C., Rhee, C.K., Lim, T.H. (2007) Electrocatalytic Oxidation of Formic Acid and Methanol on Pt Deposits on Au(111).Langmuir, 23(21): 10831-10836
https://doi.org/10.1021/la701377n
Kim, S., Jung, C., Kim, J., Rhee, C.K., Choi, S.M., Lim, T.H. (2010) Modification of Au Nanoparticles Dispersed on Carbon Support Using Spontaneous Deposition of Pt toward Formic Acid Oxidation.Langmuir, 26(6): 4497-4505
https://doi.org/10.1021/la903357c
Kim, Y.G., Kim, J.Y., Vairavapandian, D., Stickney, J.L. (2006) Platinum Nanofilm Formation by EC-ALE via Redox Replacement of UPD Copper: Studies Using in-Situ Scanning Tunneling Microscopy.J. Phys. Chem. B, 110(36): 17998-18006
https://doi.org/10.1021/jp063766f
Kongkanand, A., Kuwabata, S. (2005) Oxygen Reduction at Platinum Monolayer Islands Deposited on Au(111).J. Phys. Chem. B, 109(49): 23190-23195
https://doi.org/10.1021/jp053229f
Lee, I., Chan, K.Y., Lee, P.D. (1998) Atomic Force Microscopy of Platinum Nanoparticles Prepared on Highly Oriented Pyrolytic Graphite.Ultramicroscopy, 75(2): 69-76
https://doi.org/10.1016/S0304-3991(98)00055-2
Lee, I., Chan, K.Y., Phillips, D.L. (1998) Growth of Electrodeposited Platinum Nanocrystals Studied by Atomic Force Microscopy.Appl. Surf. Sci., 136(4): 321-330
https://doi.org/10.1016/S0169-4332(98)00355-9
Liu, Y., Gokcen, D., Bertocci, U., Moffat, T.P. (2012) Self-Terminating Growth of Platinum Films by Electrochemical Deposition.Science, 338(6112): 1327-1330
https://doi.org/10.1126/science.1228925
Liu, Y., Hangarter, C.M., Garcia, D., Moffat, T.P. (2015) Self-Terminating Electrodeposition of Ultrathin Pt Films on Ni: An Active, Low-Cost Electrode for H2 Production.Surface Science, 631: 141-154
https://doi.org/10.1016/j.susc.2014.06.002
Manandhar, S., Kelber, J.A. (2007) Spontaneous Deposition of Pt and Ir on Ru: Reduction to Intermediate Oxidation States.Electrochim. Acta, 52(15): 5010-5017
https://doi.org/10.1016/j.electacta.2007.02.001
Mayrhofer, K.J.J., Strmcnik, D., Blizanac, B.B., Stamenkovic, V., Arenz, M., Markovic, N.M. (2008) Measurement of Oxygen Reduction Activities Via the Rotating Disc Electrode Method: From Pt Model Surfaces to Carbon-Supported High Surface Area Catalysts.Electrochimica Acta, 53(7): 3181-3188
https://doi.org/10.1016/j.electacta.2007.11.057
Mrozek, M.F., Xie, Y., Weaver, M.J. (2001) Surface-Enhanced Raman Scattering on Uniform Platinum-Group Overlayers: Preparation by Redox Replacement of Underpotential-Deposited Metals on Gold.Anal. Chem., 73(24): 5953-5960
https://doi.org/10.1021/ac0106391
Nagahara, Y., Hara, M., Yoshimoto, S., Inukai, J., Yau, S.H., Itaya, K. (2004) In Situ Scanning Tunneling Microscopy Examination of Molecular Adlayers of Haloplatinate Complexes and Electrochemically Produced Platinum Nanoparticles on Au(111).J. Phys. Chem. B, 108(10): 3224-3230
https://doi.org/10.1021/jp036605+
Porsgaard, S., Merte, L.R., Ono, L.K., Behafarid, F., Matos, J., Helveg, S., Salmeron, M., Roldan, C.B., Besenbacher, F. (2012) Stability of Platinum Nanoparticles Supported on SiO2/Si(111): A High-Pressure X-ray Photoelectron Spectroscopy Study.Acs Nano, 6(12): 10743-10749
https://doi.org/10.1021/nn3040167
Rettew, R.E., Guthrie, J.W., Alamgir, F.M. (2009) Layer-by-Layer Pt Growth on Polycrystalline Au: Surface-Limited Redox Replacement of Overpotentially Deposited Ni Monolayers.J. Electrochem. Soc., 156(11): D513-D513
https://doi.org/10.1149/1.3224113
Sasaki, K., Mo, Y., Wang, J.X., Balasubramanian, M., Uribe, F., McBreen, J., Adzic, R.R. (2003) Pt Submonolayers on Metal Nanoparticles-Novel Electrocatalysts for H2 Oxidation and O2 Reduction.Electrochim. Acta, 48(25-26): 3841-3849
https://doi.org/10.1016/S0013-4686(03)00518-8
Scheijen, F.J.E., Beltramo, G.L., Hoeppener, S., Housmans, T.H.M., Koper, M.T.M. (2008) The Electrooxidation of Small Organic Molecules on Platinum Nanoparticles Supported on Gold: Influence of Platinum Deposition Procedure.J. Solid State Electrochem., 12(5): 483-495
https://doi.org/10.1007/s10008-007-0343-z
Schneider, W., Laubschat, C. (1981) Actinide-Noble-Metal Systems: An X-Ray-Photoelectron-Spectroscopy Study of Thorium-Platinum, Uranium-Platinum, and Uranium-Gold InterMetallics.Physical Review B, 23(3): 997-1005
https://doi.org/10.1103/PhysRevB.23.997
Shao, M., Sasaki, K., Marinkovic, N.S., Zhang, L., Adzic, R.R. (2007) Synthesis and Characterization of Platinum Monolayer Oxygen-Reduction Electrocatalysts with Co-Pd Core-Shell Nanoparticle Supports.Electrochem. Commun., 9(12): 2848-2853
https://doi.org/10.1016/j.elecom.2007.10.009
Strbac, S., Petrovic, S., Vasilic, R., Kovac, J., Zalar, A., Rakocevic, Z. (2007) Carbon Monoxide Oxidation on Au(111) Surface Decorated by Spontaneously Deposited Pt.Electrochim. Acta, 53(2): 998-1005
https://doi.org/10.1016/j.electacta.2007.08.019
Tong, Y.Y., Du, B. (2005) A Coverage-Dependent Study of Pt Spontaneously Deposited onto Au and Ru Surfaces: Direct Experimental Evidence of the Ensemble Effect for Methanol Electro-Oxidation on Pt.J. Phys. Chem. B, 109(38): 17775-17780
https://doi.org/10.1021/jp0537310
Trasatti, S., Petrii, O.A. (1991) Real Surface Area Measurements in Electrochemistry.Pure & Appl. Chem., 63(5): 711-734
https://doi.org/10.1351/pac199163050711
Uosaki, K., Ye, S., Naohara, H., Oda, Y., Haba, T., Kondo, T. (1997) Electrochemical Epitaxial Growth of a Pt(111) Phase on an Au(111) Electrode.J Phys Chem B, 101(38): 7566-7572
https://doi.org/10.1021/jp9717406
Uosaki, K., Ye, S., Oda, Y., Haba, T., Hamada, K. (1997) Adsorption of Hexachloroplatinate Complex on Au(111) Electrode. An in Situ Scanning Tunneling Microscopy and Electrochemical Quartz Microbalance Study.Langmuir, 13(3): 594-596
https://doi.org/10.1021/la960728m
van Brussel, M., Kokkinidis, G., Vandendael, I., Buess-Herman, C. (2002) High Performance Gold-Supported Platinum Electrocatalyst for Oxygen Reduction.Electrochem. Commun., 4(10): 808-813
https://doi.org/10.1016/S1388-2481(02)00437-X
Vracar, Lj.M., Sepa, D.B., Damjanovic, A. (1989) Palladium Electrode in Oxygen-Saturated Aqueous Solutions Potential Dependent Adsorption of Oxygen Containing Species and Their Effect on Oxygen Reduction.J. Electrochem. Soc., 136: 1973-1977
https://doi.org/10.1149/1.2097105
Waibel, H.F., Kleinert, M., Kibler, L.A., Kolb, D.M. (2002) Initial Stages of Pt Deposition on Au(111) and Au(100).Electrochimica Acta, 47(9): 1461-1467
https://doi.org/10.1016/S0013-4686(01)00861-1
Wakabayashi, N., Takeichi, M., Itagaki, M., Uchida, H., Watanabe, M. (2005) Temperature-Dependence of Oxygen Reduction Activity at a Platinum Electrode in an Acidic Electrolyte Solution Investigated with a Channel Flow Double Electrode.J. Electroanal. Chem., 574(2): 339-346
https://doi.org/10.1016/j.jelechem.2004.08.013
Wang, L., Guo, S.J., Zhai, J.F., Hu, X.D., Dong, S.J. (2008) Ultrathin Platinum-Group Metal Coated Hierarchical Flowerlike Gold Microstructure: Electrochemical Design and Characterization.Electrochim Acta, 53: 2776-2781
https://doi.org/10.1016/j.electacta.2007.10.080
Whalen, J.J., Weiland, J.D., Searson, P.C. (2005) Electrochemical Deposition of Platinum from Aqueous Ammonium Hexachloroplatinate Solution.J. Electrochem. Soc., 152(11): C738-C743
https://doi.org/10.1149/1.2047407
Williams, K.R. (1966) An Introduction to Fuel Cells. New York: Elsevier
https://doi.org/10.1149/1.2424014
Yoo, S.H., Park, S. (2007) Platinum-Coated, Nanoporous Gold Nanorod Arrays: Synthesis and Characterization.Adv. Mater, 19(12): 1612-1615
https://doi.org/10.1002/adma.200602551
Yoo, S.H., Park, S. (2008) Electrocatalytic Applications of a Vertical Au Nanorod Array Using Ultrathin Pt/Ru/Pt Layer-by-Layer Coatings.Electrochim Acta, 53: 3656-3662
https://doi.org/10.1016/j.electacta.2007.12.028
Yu, Y.L., Hu, Y.P., Liu, X.W., Deng, W.Q., Wang, X. (2009) The Study of Pt@Au Electrocatalyst Based on Cu Underpotential Deposition and Pt Redox Replacement.Electrochimica Acta, 54(11): 3092-3097
https://doi.org/10.1016/j.electacta.2008.12.004
Zei, M.S., Lei, T., Ertl, G. (2003) Spontaneous and Electrodeposition of Pt on Ru(0001).Phys Chem, 217(5): 447-458
https://doi.org/10.1524/zpch.217.5.447.20460
Zhai, J.F., Huang, M.H., Dong, S.J. (2007) Electrochemical Designing of Au/Pt Core Shell Nanoparticles as Nanostructured Catalyst with Tunable Activity for Oxygen Reduction.Electroanalysis, 19: 506-509
https://doi.org/10.1002/elan.200603728
Zhang, J., Lima, F.H.B., Shao, M.H., Sasaki, K., Wang, J.X., Hanson, J., Adzic, R.R. (2005) Platinum Monolayer on Nonnoble Metal-Noble Metal Core-Shell Nanoparticle Electrocatalysts for O2 Reduction.J. Phys. Chem. B, 109(48): 22701-22704
https://doi.org/10.1021/jp055634c
Zhang, J., Mo, Y., Vukmirovic, M.B., Klie, R., Sasaki, K., Adzic, R.R. (2004) Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Pd(111) and on Carbon-Supported Pd Nanoparticles.J.Phys.Chem.B, 108(30): 10955-10964
https://doi.org/10.1021/jp0379953
Zoval, J.V., Lee, J., Gorer, S., Penner, R.M. (1998) Electrochemical Preparation of Platinum Nanocrystallites with Size Selectivity on Basal Plane Oriented Graphite Surfaces.J. Phys. Chem. B, 102(7): 1166-1175
Downloads
Published
Issue
Section
License
Copyright (c) 2022 CC BY 4.0 by Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.