A review of amino acids used as corrosion inhibitors on iron metal/alloys in aggressive environments
DOI:
https://doi.org/10.5937/zasmat2203318EKeywords:
corrosion inhibitor, iron, metal, alloy, amino acid, computational methodsAbstract
Research into the use of safe and environmentally friendly corrosion inhibitors can pave the way for an understanding of their inhibition mechanisms in metallic alloy materials. This review seeks to present and discuss the research work reported in the literature on the use of amino acids and their derivatives as corrosion inhibitors for iron and its alloys in different aggressive solutions. This non-toxic, biodegradable and relatively cheap corrosion inhibitor has shown to be efficient as an inhibitor for metals/alloys in acidic, alkaline and neutral solutions depending on experimental conditions. Electrochemical and surface techniques were among the most often used techniques to evaluate the corrosion inhibition efficiency of amino acids. Highest values of inhibition efficiency can be obtained in the presence of ions as Iand Br. This review presents and discusses most of the contributions made in literature on the use of amino acids and their derivatives as corrosion inhibitors for iron and its alloys.References
Abd, S.S., El-Rehim,, Ibrahim, M.A.M., Khaled, K.F. (2013) Chemical and Electrochemical Investigations of L-Arginine as Corrosion Extract for Steel in Hydrochloric Acid Solutions.J. Appl. Electrochem, 1409-1421; 8
https://doi.org/10.1016/S1452-3981(23)14107-1
Abdallah, M., Soliman, K., Alfattani, R., Fawzy, A., Ibrahim, M. (2022) Insight of corrosion mitigation performance of SABIC iron in 0.5 M HCl solution by tryptophan and histidine: Experimental and computational approaches.International Journal of Hydrogen Energy, 47(25): 12782-12797
https://doi.org/10.1016/j.ijhydene.2022.02.007
Abdel-Fatah, H., Abdel-Samad, H., Hassan, A., Elsehiety, H. (2014) Effect of variation of the structure of amino acids on inhibition of the corrosion of lowalloy steel in ammoniated citric acid solutions.Research on Chemical Intermediates, 40: 1675-1690
https://doi.org/10.1007/s11164-013-1073-8
Abdel-Fatah, H., Kamel, M., Hassan, A., Rashwan, S., Wahaab, S., El-Sehiety, H. (2017) Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media.Arabian Journal of Chemistry, 10: 1164-1171
https://doi.org/10.1016/j.arabjc.2013.02.010
Abdel-Fatah, H., Rashwan, S., Wahaab, S., Hassan, A. (2016) Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid.Arabian Journal of Chemistry, 9: 1069-1076
https://doi.org/10.1016/j.arabjc.2011.11.012
Abd-El-nabey, R., Khalil, N., Mohamed, A. (1985) Inhibition by amino acids of the corrosion of steel in acid.Surf. Technol, 24, 383-389
https://doi.org/10.1016/0376-4583(85)90056-1
Alagbe, M., Umoru, L., Afonja, A., Olorunniwo, O. (2006) Effects of different amino-acid derivatives on the inhibition of NST-44 mild steel corrosion in lime fluid.Journal of Applied Sciences, 6: 1142-1147
https://doi.org/10.3923/jas.2006.1142.1147
Alagbe, M., Umoru, I., Afonja, A., Olorunniwo, O. (2009) Investigation of the effect of different amino-acid derivatives on the inhibition of NST-44 carbon steel corrosion in cassava fluid.Anti-Corrosion Methods and Materials, 56: 43-50
https://doi.org/10.1108/00035590910923455
Alamiery, A., Mohamad, A., Kadhum, A., Takriff, M. (2022) Comparative data on corrosion protection of mild steel in HCl using two new thiazoles.Data in Brief, 40: 107838-107838
https://doi.org/10.1016/j.dib.2022.107838
Alamry, K., Aslam, R., Khan, A., Hussein, M., Tashkandi, N. (2022) Evaluation of corrosion inhibition performance of thiazolidine-2,4-diones and its amino derivative: Gravimetric, electrochemical, spectroscopic, and surface morphological studies.Process Safety and Environmental Protection, 159: 178-197
https://doi.org/10.1016/j.psep.2021.12.061
Al-Fakih, A., Algamal, Z.Y., Lee, M., Abdallah, H., Maarof, H., Aziz, M. (2016) Quantitative structureactivity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression.Journal of Chemometrics, 30: 361-368
https://doi.org/10.1002/cem.2800
Al-Sabagh, A., Nasser, N., El-Azabawy, O., Tabey, A. (2016) Corrosion inhibition behavior of new synthesized nonionic surfactants based on amino acid on carbon steel in acid media.Journal of Molecular Liquids, 219: 1078-1088
https://doi.org/10.1016/j.molliq.2016.03.048
Amin, M., Gaber, A., Mohsen, Q. (2011) Monitoring corrosion and corrosion control of low alloy ASTM A213 grade T22 boiler steel in HCl solutions.Arabian Journal of Chemistry, 4: 223-229
https://doi.org/10.1016/j.arabjc.2010.06.040
Amin, M., Hazzazi, O., Kandemirli, F., Saracoglu, M. (2012) Inhibition performance and adsorptive behavior of three amino acids on cold-rolled steel in 1.0 M HCl-chemical, electrochemical, and morphological studies.Corrosion, 68: 688-698
Amin, M., Abd, E.R.S., El-Naggar, M., Abdelfatah, H. (2009) Assessment of EFM as a new nondestructive technique for monitoring the corrosion inhibition of low chromium alloy steel in 0.5 M HCl by Tyrosine.Journal of Materials Science, 44, 6258-6272
https://doi.org/10.1007/s10853-009-3856-2
Amin, M., Ibrahim, M. (2011) Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized Glycine derivative.Corrosion Science, 53: 873-885
https://doi.org/10.1016/j.corsci.2010.10.022
Amin, M., Khaled, K., Fadl-Allah, S. (2010) Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions: Experimental and theoretical studies.Corrosion Science, 52: 140-151
https://doi.org/10.1016/j.corsci.2009.08.055
Amin, M., Rehim, S., Abdel-Fatah, H. (2009) Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation me.Corrosion Science, 51, 882-894
https://doi.org/10.1016/j.corsci.2009.01.006
Amin, M.A., Hazzazi, O.A., Kandemirli, F., Saracoglu, M. (2012) Inhibition performance and adsorptive behavior of three amino acids on coldrolled steel in 1.0 M HCl-chemical, electrochemical, and morphological studies.Corrosion, 68, 688-698
Amin, M.A., Ei-Rehim, S.S., El-Sherbini, E.E.F., Hazzazi, O.A., Abbas, M.N. (2009) Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions: Part I: Weight loss, polarization, impedance EFM and EDX studies.Corrosion Science, 51(3): 658-667
https://doi.org/10.1016/j.corsci.2008.12.008
Aouniti, A., Khaled, K., Hammouti, B. (2013) Correlation between inhibition efficiency and chemical structure of some amino acids on the corrosion of Armco iron in molar HCl.International Journal of Electrochemical Science, 8, 5925-5943
https://doi.org/10.1016/S1452-3981(23)14731-6
Appa, R., Venkateswara, R., Srinivasa, R., Sreedhar, B. (2010) Tungstate as a synergist to phosphonatebased formulation for corrosion control of carbon steel in nearly neutral aqueous environment.Journal of Chemical Sciences, 122, 639-649
https://doi.org/10.1007/s12039-010-0099-3
Appa, R., Srinivasa, R., Venkateswara, M. (2008) Environmentally friendly ternary inhibitor formulation based on N, N-bis (phosphonomethyl) glycine.Corrosion Engineering Science and Technology, 43, 46-53
https://doi.org/10.1179/174327807X214635
Appa, R., Venkateswara, R., Srinivasa, R., Sreedhar, B. (2011) Synergistic effect of N, N-bis (phosphonomethyl) glycine and zinc ions in corrosion control of carbon steel in cooling water systems.Chemical Engineering Communications, 198, 1505-1529
https://doi.org/10.1080/00986445.2010.525200
Ashassi-Sorkhabi, H., Asghari, E. (2008) Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a 'green' inhibitor.Electrochimica Acta, 54(2): 162
https://doi.org/10.1016/j.electacta.2008.08.024
Ashassi-Sorkhabi, H., Asghari, E. (2010) Electrochemical corrosion behavior of Al7075 rotating disc electrode in neutral solution containing ʟ-Glutamine as a green inhibitor.Journal of Applied Electrochemistry, 40: 631-637
https://doi.org/10.1007/s10800-009-0038-5
Ashassi-Sorkhabia, H., Majidib, M.R., Seyyedi, K. (2004) Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution.Applied Surface Science, 225(1-4): 176
https://doi.org/10.1016/j.apsusc.2003.10.007
Ayappan, G.R.S. (2015) Study of corrosion inhibition properties of novel semicarbazones on mild steel in acidic solutions.Journal of Chilean Chemical Society, 60(1)
https://doi.org/10.4067/S0717-97072015000100004
Badawy, E.G.W. (2013) The use of Cysteine, N-acetyl cysteine and Methionine as environmentally friendly corrosion inhibitors for Cu-10Al-5Ni alloy in neutral chloride solutions.Electrochimica Acta, 108, 860-866
https://doi.org/10.1016/j.electacta.2013.06.079
Bell, G., Edgemon, G., Reid, S. (1998) NACE international corrosion conference. San Diego (CA), USA, 22-27
Bilgic, G.G.S. (2010) A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel.Corrosion Science, 52, 3435-3443
https://doi.org/10.1016/j.corsci.2010.06.015
Bobina, M., Kellenberger, A., Millet, J., Muntean, C., Vaszilcsin, N. (2013) Corrosion resistance of carbon steel in weak acid solutions in the presence of ʟ-Histidine as corrosion inhibitor.Corrosion Science, 69, 389-395
https://doi.org/10.1016/j.corsci.2012.12.020
Bobina, M., Vaszilcsin, N., Muntean, C. (2013) Influence of Tryptophan on the corrosion process of carbon steel in aqueous weak acid solutions.Revista de Chimie,-Bucharest, 64, 83-88
Bosch, R.W., Hubrecht, J., Bogaerts, W.F., Syrett, B.C. (2001) Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring.Corrosion, 57(1): 60
https://doi.org/10.5006/1.3290331
Bouanis, M., Tourabi, M., Nyassi, A., Zarrouk, A., Jama, C., Bentiss, F. (2016) Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies.Applied Surface Science, 389: 952-966
https://doi.org/10.1016/j.apsusc.2016.07.115
Bouzidi, D., Chetouani, A., Hammouti, B., Taleb, S., Taleb, M., Aldeyab, S. (2012) Electrochemical corrosion behaviour of iron rotating disc electrode in physiological medium containing amino acids and amino esters as an inhibitor.International Journal of Electrochemical Science, 7: 2334-2348
https://doi.org/10.1016/S1452-3981(23)13883-1
Cang, H., Fei, Z., Shi, W., Xu, Q. (2012) Experimental and theoretical study for corrosion inhibition of mild steel by ʟ-Cysteine.International Journal of Electrochemical Science, 7: 10121-10131
https://doi.org/10.1016/S1452-3981(23)16263-8
Cang, H., Shi, W., Lu, Y., Shao, J., Xu, Q. (2012) Cysteine as inhibitor on the corrosion of mild steel in sulphuric acid and hydrochloric acid solutions.Asian Journal of Chemistry, 24: 3675-3678
Carlsen, L. (2009) The interplay between QSAR/QSPR studies and partial order ranking and formal concept analyses.International Journal of Molecular Sciences, 10(4): 1628-1657
https://doi.org/10.3390/ijms10041628
Chaia, C., Xua, Y., Lia, D., Zhaoa, X., Xua, Y., Zhanga, L., Wua, Y. (2019) Cysteamine modified polyaspartic acid as a new class of green corrosion inhibitor for mild steel in sulfuric acid medium: Synthesis, electrochemical, surface study and theoretical calculation.Progress in organic coatings, 129: 159-170
https://doi.org/10.1016/j.porgcoat.2018.12.028
Cottis, R. (2001) Interpretation of electrochemical noise data.Corrosion, 57, 265-285
https://doi.org/10.5006/1.3290350
Cui, R., Gu, N., Li, C. (2011) Polyaspartic acid as a green corrosion inhibitor for carbon steel.Materials and Corrosion, 62, 362-369
https://doi.org/10.1002/maco.200905511
Deng, Q., Shi, H., Ding, N., Chen, B., He, X., Liu, G., Tang, Y., Long, Y., Chen, G. (2012) Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl.Corrosion Science, 57: 220-227
https://doi.org/10.1016/j.corsci.2011.12.014
Deng, Q., Xiao-Peng, H., Hong-Wei, S., Bao-Qin, C. (2012) Concise Cu-I-catalyzed azidealkyne 1,3dipolar cycloaddition reaction ligation remarkably enhances the corrosion inhibitive potency of natural amino acids for mild steel in HCl.Industrial and Engineering Chemistry Research, 51, 7160-7169
https://doi.org/10.1021/ie3004557
Döner, A., Yüce, A., Kardas, G. (2013) Inhibition effect of rhodanine-N-acetic acid on copper corrosion in acidic media.Industrial and Engineering Chemistry Research, 52, 9709-9718
https://doi.org/10.1021/ie400160x
Döner, A., Kardas, G. (2011) N-Aminorhodanine as an effective corrosion inhibitor for mild steel in 0.5M H2SO4.Corrosion Science, 53(12): 4223-4232
https://doi.org/10.1016/j.corsci.2011.08.032
Döner, A., Sahin, E., Kardas, G., Serindag, O. (2013) Investigation of corrosion inhibition effect of 3-[(2hydroxy-benzylidene)amino]-2-thioxo-thiazolidin4one on corrosion of mild steel in the acidic medium.Corrosion Science, 66, 278-284
https://doi.org/10.1016/j.corsci.2012.09.030
Eddy, N., Awe, F., Gimba, C., Ibisi, N., Ebenso, E. (2011) QSAR, experimental and computational chemistry simulation studies on the inhibition potentials of some amino acids for the corrosion of mild steel in 0.1 M HCl.International Journal of Electrochemical Science, 6: 931-957
https://doi.org/10.1016/S1452-3981(23)18447-1
https://doi.org/10.1016/S1452-3981(23)18170-3
https://doi.org/10.1016/S1452-3981(23)15046-2
https://doi.org/10.1016/S1452-3981(23)18330-1
Eddy, N., Ibok, U., Ita, B. (2011) QSAR and quantum chemical studies on the inhibition potentials of some amino acids for the corrosion of mild steel in H2SO4.Journal of Computational Methods in Sciences and Engineering, 11, 25-43
https://doi.org/10.3233/JCM-2011-0290
Eddy, N. (2011) Experimental and theoretical studies on some amino acids and their potential activity as inhibitors for the corrosion of mild steel.Journal of Advanced Research, 2(2): 35-47
https://doi.org/10.1016/j.jare.2010.08.005
El, I.B., Jmiai, A., Bazzi, L., El, I.S. (2020) Amino acids and their derivatives as corrosion inhibitors for metals and alloys.Arabian Journal of Chemistry, 13, 740 - 771
https://doi.org/10.1016/j.arabjc.2017.07.013
Emran, K., Hamdona, S., Balawi, A. (2013) Investigation of the corrosion resistance of some safely additives and mixed salts-scales on S41000 stainless steel surface in synthetic seawater.International Journal of Electrochemical Science, 8: 8126-8137
https://doi.org/10.1016/S1452-3981(23)12873-2
Emregül, K., Atakol, O. (2003) Corrosion inhibition of mild steel with Schiff base compounds in 1 M HCl.Materials Chemistry and Physics, 82, 188-193
https://doi.org/10.1016/S0254-0584(03)00204-9
Emregül, K.C., Hayvalı, M. (2004) Studies on the effect of vanillin and protocatechualdehyde on the corrosion of steel in hydrochloric acid.Materials Chemistry and Physics, 83(2-3): 209-216
https://doi.org/10.1016/j.matchemphys.2003.08.030
Engelken, B.A.R. (2002) Chromium-based regulations and greening in metal finishing industries in the USA.Environmental Science & Policy, 5, 121-133
https://doi.org/10.1016/S1462-9011(02)00028-X
Esmailzadeh, S., Aliofkhazraei, M., Sarlak, H. (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review.Protection of Metals and Physical Chemistry of Surfaces, 54(5), 976-989
https://doi.org/10.1134/S207020511805026X
Feng, W., Patel, S.M., Young, J., Zunino, M., Xanthos (2007) Smart polymeric coatings-recent advances.Advances in Polymer Technology, 26: 1-13
https://doi.org/10.1002/adv.20083
Finšgar, M. (2020) Electrochemical, 3D topography, XPS, and ToF-SIMS analyses of 4-methyl-2phenylimidazole as a corrosion inhibitor for brass.Corrosion Science, 169, 108632
https://doi.org/10.1016/j.corsci.2020.108632
Fu, J., Li, S., Cao, I., Wang, Y., Yan, I., Lu, L. (2010) ʟ-tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution.Journal of Materials Science, 45: 979-986
https://doi.org/10.1007/s10853-009-4028-0
https://doi.org/10.1007/s10853-010-4720-0
Fu, J., Li, S., Wang, Y., Liu, X., Lu, L. (2011) Computational and electrochemical studies on the inhibition of corrosion of mild steel by l-Cysteine and its derivatives.Journal of Materials Science, 46(10): 3550-3559
https://doi.org/10.1007/s10853-011-5267-4
Gaidis, J. (2004) Chemistry of corrosion inhibitors.Cement & Concrete Composites, 26, 181-189
https://doi.org/10.1016/S0958-9465(03)00037-4
Gece, G. (2008) The use of quantum chemical methods in corrosion inhibitor studies.Corrosion Science, 50(11): 2981-2992
https://doi.org/10.1016/j.corsci.2008.08.043
Gece, G., Bilgic, S., Tu¨rksen, O. (2010) Quantum chemical studies of some amino acids on the corrosion of cobalt in sulfuric acid solution.Materials and Corrosion, 61: 141-146
https://doi.org/10.1002/maco.200905251
Gowri, S., Sathiyabama, J., Rajendran, S., Kennedy, Z., Devi, S. (2013) Corrosion inhibition of carbon steel in sea water by Glutamic acid-Zn 2+ system.Chemical Science Transactions, 2: 275-281
https://doi.org/10.7598/cst2013.327
Guo, L., Dong, W., Zhang, S. (2014) Theoretical challenges in understanding the inhibition mechanism of copper corrosion in acid media in the presence of three triazole derivatives.Royal Society of Chemistry Advances, 4: 41956-41967
https://doi.org/10.1039/C4RA04931D
Gupta, N., Verma, C., Quraishi, M., Mukherjee, A. (2016) Schiff's bases derived from l-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: Experimental and theoretical studies.Journal of Molecular Liquids, 215: 47-57
https://doi.org/10.1016/j.molliq.2015.12.027
Gustincic, D., Kokalj, A. (2015) A DFT study of adsorption of imidazole, triazole, and tetrazole on oxidized copper surfaces: Cu2O(111) and Cu2O(111)-w/o-Cu CUS.Physical Chemistry Chemical Physics, 17: 28602-28615
https://doi.org/10.1039/C5CP03647J
Ha¨ussinger, K.M.D. (1992) Mammalian amino acid transport. Springer, Science & Business Media
Haldhar, R., Prasad, D., Saxena, A. (2018) Armoracia rusticana as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5 M sulphuric acid: Experimental and theoretical investigations.Journal of Environmental Chemical Engineering
https://doi.org/10.1016/j.jece.2018.08.025
Haldhar, R., Prasad, D., Saxena, A. (2018) Myristica fragrans extract as an eco-friendly corrosion inhibitor for mild steel in 0.5 M H2SO4 solution.Journal of Environmental Chemical Engineering, 6(2), 2290-2301
https://doi.org/10.1016/j.jece.2018.03.023
Hamed, E., El-Rehim, S., El-Shahat, M., Shaltot, A. (2012) Corrosion inhibition of nickel in H2SO4 solution by Alanine.Material Science and Engineering B, 177: 441-448
https://doi.org/10.1016/j.mseb.2012.01.016
Hammouti, B., Aouniti, A., Taleb, M., Brighli, M., Kertit, S. (1995) ʟ-methionine methyl-ester hydrochloride as a corrosion-inhibitor of iron in acid chloride solution.Corrosion, 51, 411-416
https://doi.org/10.5006/1.3293606
Hluchan, V., Wheeler, B.L., Hackerman, N. (1988) Amino acids as corrosion inhibitors in hydrochloric acid solutions.Materials and Corrosion/Werkstoffe und Korrosion, 39(11): 512-517
https://doi.org/10.1002/maco.19880391106
Imjjad, A., Abbiche, K., Mellaoui, M., Jmiai, A., Baraka, N., Taleb, A., Bazzi, I., Issami, S., Hilali, M., Said, R., Hochlaf, M. (2022) Corrosion inhibition of mild steel by aminobenzoic acid isomers in hydrochloric acid solution: Efficiency and adsorption mechanisms.Applied Surface Science, 576: 151780-151780
https://doi.org/10.1016/j.apsusc.2021.151780
Jano, A., Lame, G.A., Kokalari, T.E. (2014) The inhibition effects of Methionine on mild steel in acidic media.Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, 25: 39-42
https://doi.org/10.2478/auoc-2014-0007
Jensen, F. (2007) Introduction to computational chemistry. Chichester: John Wiley & Sons
Kabanda, M.M., Obot, I.B., Ebenso, E.E. (2013) Computational study of some amino acid derivatives as potential corrosion inhibitors for different metal surfaces and in different media.International Journal of Electrochemical Science, 8: 10839-10850
https://doi.org/10.1016/S1452-3981(23)13152-X
Kalota, D., Silverman, D. (1994) Behavior of asparticacid as a corrosion-inhibitor for steel.Corrosion, 50: 138-145
https://doi.org/10.5006/1.3293502
Kandemirli, F., Saracoglu, M., Amin, M., Basaran, M., Vurdu, C. (2014) The quantum chemical calculations of serine, threonine and glutamine.International Journal of Electrochemical Science, 9: 3819-3827
https://doi.org/10.1016/S1452-3981(23)08053-7
Kasprzhitskii, A., Lazorenko, G., Nazdracheva, T., Yavna, V. (2021) Comparative computational study of ʟ-amino acids as green corrosion inhibitors for mild steel.Computation, (1): 9-9
https://doi.org/10.3390/computation9010001
Kaya, S., Tu¨zu¨n, B., Kaya, C., Obot, I. (2016) Determination of corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study.Journal of the Taiwan Institute of Chemical Engineers, 58: 528-535
https://doi.org/10.1016/j.jtice.2015.06.009
Kelly, R., Inman, M., Hudson, J. (1996) Electrochemical noise measurement for corrosion applications. West Conshohocken USA: ASTM, 1277, 101-113
https://doi.org/10.1520/STP37954S
Kendig, M., Hon, M., Warren, I. (2003) Smart' corrosion inhibiting coatings.Progress in Organic Coatings, 47: 183-189
https://doi.org/10.1016/S0300-9440(03)00137-1
Khaled, K., El-Sherik, A. (2013) Using molecular dynamics simulations and genetic function approximation to model corrosion inhibition of iron in chloride solutions.International Journal of Electrochemical Science, 8: 10022-10043
https://doi.org/10.1016/S1452-3981(23)13029-X
Khaled, K., Sherik, A. (2013) Using neural networks for corrosion inhibition efficiency prediction during corrosion of steel in chloride solutions.International Journal of Electrochemical Science, 8: 9918-9935
https://doi.org/10.1016/S1452-3981(23)13022-7
Khaled, K., Al-Mhyawi, S. (2013) Electrochemical and density function theory investigations of ʟ-Arginine as corrosion inhibitor for steel in 3.5% NaCl.International Journal of Electrochemical Science, 8: 4055-4072
https://doi.org/10.1016/S1452-3981(23)14453-1
https://doi.org/10.1016/S1452-3981(23)14107-1
Khaled, K., Abdelshafi, N., El-Maghraby, A., Aouniti, A., Almobarak, N., Hammouti, B. (2012) Alanine as corrosion inhibitor for iron in acid medium: A molecular level study.International Journal of Electrochemical Science, 7: 12706-12719
https://doi.org/10.1016/S1452-3981(23)16578-3
Kokalj, A. (2010) Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance.Electrochimica Acta, 56: 745-755
https://doi.org/10.1016/j.electacta.2010.09.065
Kovacevic, N., Milosev, I., Kokalj, A. (2015) The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding.Corrosion Science, 98: 457-470
https://doi.org/10.1016/j.corsci.2015.05.041
Kovacevic', N., Kokalj, A. (2011) Analysis of molecular electronic structure of imidazole-and benzimidazole-based inhibitors: A simple recipe for qualitative estimation of chemical hardness.Corrosion Science, 53: 909-921
https://doi.org/10.1016/j.corsci.2010.11.016
Kovačević, N., Kokalj, A. (2013) Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces.Materials Chemistry and Physics, 137(1): 331-339
https://doi.org/10.1016/j.matchemphys.2012.09.030
Kovačević, N., Kokalj, A. (2013) The relation between adsorption bonding and corrosion inhibition of azole molecules on copper.Corrosion Science, 73: 7-17
https://doi.org/10.1016/j.corsci.2013.03.016
Kowsari, E., Armanb, S., Shahini, M., Zandi, H., Ehsani, A., Naderif, R., Pourghasemihanza, A., Mehdipour, M. (2016) In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1 M HCl solution.Corrosion Science, 112: 73-85
https://doi.org/10.1016/j.corsci.2016.07.015
Lee, C., Yang, W., Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical Review B, 37(2), str. 785-789
https://doi.org/10.1103/PhysRevB.37.785
Li, W., Calle, L. (2007) A smart coating for the early detection and inhibition of corrosion. in: The smart coatings 2007 conference, 191-191
Li, X., Deng, S., Fu, H. (2009) Synergistic inhibition effect of red tetrazolium and uracil on the corrosion of cold rolled steel in H3PO4 solution: Weight loss, electrochemical, and AFM approaches.Materials Chemistry and Physics, 115(2-3), 815-824
https://doi.org/10.1016/j.matchemphys.2009.02.025
Liu, P., Long, W. (2009) Current mathematical methods used in QSAR/QSPR studies.International Journal of Molecular Sciences, 10, 1978-1998
https://doi.org/10.3390/ijms10051978
Liu, X., Okafor, P., Pan, X., Njoku, D., Uwakwe, K., Zheng, Y. (2020) Corrosion inhibition and adsorption properties of cerium-amino acid complexes on mild steel in acidic media: Experimental and DFT studies.Journal of Adhesion Science and Technology, 34(19), 2047-2074
https://doi.org/10.1080/01694243.2020.1749474
Luna, M., Manh, T., Sierra, R., Flores, J., Rojas, L., Estrada, E. (2019) Study of corrosion behavior of API 5L X52 steel in sulfuric acid in the presence of ionic liquid 1-ethyl 3-methylimidazolium thiocyanate as corrosion inhibitor.Journal of Molecular Liquids, 289: 111106-111106
https://doi.org/10.1016/j.molliq.2019.111106
Madkour, L., Ghoneim, M. (1997) Inhibition of the corrosion of 16/14 austenitic stainless steel by oxygen and nitrogen containing compounds.Bulletin of Electrochemistry, 13(1): 1-7
Mansfeld, F. (2009) Fundamental aspects of the polarization resistance technique-the early days.Journal of Solid-State Electrochemistry, 13, 515-520
https://doi.org/10.1007/s10008-008-0652-x
Masadeh, S. (2015) The effect of added carbon black to concrete mix on corrosion of steel in concrete.Journal of Minerals and Materials Characterization and Engineering, 3, 271-276
https://doi.org/10.4236/jmmce.2015.34029
Mendonca, G., Costa, S., Freire, V., Casciano, P., Correia, A. (2017) Lima-Neto Pd understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods.Corrosion Science, 115: 41-55
https://doi.org/10.1016/j.corsci.2016.11.012
Mert, B., Mert, M., Kardas, G., Yazıcı, B. (2011) Experimental and theoretical investigation of 3amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium.Corrosion Science, 53, 4265-4272
https://doi.org/10.1016/j.corsci.2011.08.038
Migahed, M., Rashwan, S., Kamel, M., Habib, R. (2016) Synthesis, characterization of polyaspartic acidglycine adduct and evaluation of their performance as scale and corrosion inhibitor in desalination water plants.Journal of Molecular Liquids, 224: 849-858
https://doi.org/10.1016/j.molliq.2016.10.091
Migahed, M.A., Azzam, E.M.S., Morsy, S.M.I. (2009) Electrochemical behaviour of carbon steel in acid chloride solution in the presence of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles.Corrosion Science, 51(8): 1636-1644
https://doi.org/10.1016/j.corsci.2009.04.010
Mihara, H., Hayakawa, Y., Kagaku, D. (1969) Effects of oxycarbonic acids on corrosion of aluminum in alkaline medium.Journal of The Electrochemical Society, Japan, 37
Miralrio, A., Vázquez, A. (2020) Plant extracts as green corrosion inhibitors for different metal surfaces and corrosive media: A review.Processes, (8): 942-942
https://doi.org/10.3390/pr8080942
Mobin, M., Parveen, M., Aslam, H. (2022) Effect of different additives, temperature, and immersion time on the inhibition behavior of L-valine for mild steel corrosion in 5% HCl solution.Journal of Physics and Chemistry of Solids, 110422-110422
https://doi.org/10.1016/j.jpcs.2021.110422
Mobin, M., Parveen, M., Rafiquee, M. (2017) Synergistic effect of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide on the corrosion inhibition behavior of ʟ-Methionine on mild steel in acidic medium.Arabian Journal of Chemistry, 10, S1364-S1372
https://doi.org/10.1016/j.arabjc.2013.04.006
Mobin, M., Zehra, S., Parveen, M. (2016) l-Cysteine as corrosion inhibitor for mild steel in 1 M HCl and synergistic effect of anionic, cationic and non-ionic surfactants.Journal of Molecular Liquids, 216: 598-607
https://doi.org/10.1016/j.molliq.2016.01.087
Morad, M. (2008) Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids.Journal of Applied Electrochemistry, 38: 1509-1518
https://doi.org/10.1007/s10800-008-9595-2
Morad, M.S. (2005) Effect of amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solutions containing Cl, Fand Fe3+ ions.J. Appl. Electrochem., 35: 889-895
https://doi.org/10.1007/s10800-005-4745-2
Moustafa, A., Abdel-Rahman, H., Mabrouk, D., Omar, A. (2022) Mass transfer role in electropolishing of carbon steel in H3PO4 containing amino acids: Electrochemical, computational, SEM/EDX, and stylus profilometer investigation.Alexandria Engineering Journal, (8): 6305-6327
https://doi.org/10.1016/j.aej.2021.11.062
Nsakabwebwe, C., Makhatha, M., Tsoeunyane, G., Baruwa, A. (2022) Corrosion inhibition efficiency of polyvinylpyrrolidone-cysteine on mild steel in 1.0 m hcl solution.Journal of Bio-and Tribo-Corrosion, 8(2),48
https://doi.org/10.1007/s40735-022-00647-3
Obot, I., Onyeachu, I., Zeino, A., Umoren, S. (2019) Electrochemical noise (EN) technique: Review of recent practical applications to corrosion electrochemistry research.Journal of Adhesion Science and Technolog, 33:13, 1453-1496
https://doi.org/10.1080/01694243.2019.1587224
Obot, I., Macdonald, D., Gasem, Z. (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview.Corrosion Science, 99: 1-30
https://doi.org/10.1016/j.corsci.2015.01.037
Oguzie, E., Li, Y., Wang, F. (2007) Effect of 2-amino-3-mercaptopropanoic acid (cysteine) on the corrosion behaviour of low carbon steel in sulphuric acid.Electrochimica Acta, 53(2): 909-914
https://doi.org/10.1016/j.electacta.2007.07.076
Oguzie, E., Li, Y., Wang, F. (2007) Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel: Synergistic effect of Methionine and iodide ion.Electrochimica Acta, 52: 6988-6996
https://doi.org/10.1016/j.electacta.2007.05.023
Olivares, O., Likhanova, N.V., Gomez, B., Navarrete, J., Llanos-Serrano, M.E., Arce, E., Hallen, J.M. (2006) Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment.Applied Surface Science, 252(8): 2894
https://doi.org/10.1016/j.apsusc.2005.04.040
Olivares-Xometl, O., Likhanova, N., Dominguezaguilar, M., Arce, E., Dorantesc, H., Arellanes-Lozada, P. (2008) Synthesis and corrosion inhibition of alphaamino acids alkylamides for mild steel in acidic environment.Materials Chemistry and Physics, 110: 344-351
https://doi.org/10.1016/j.matchemphys.2008.02.010
Ormellese, M., Lazzari, L., Goidanich, S., Fumagalli, G., Brenna, A. (2009) A study of organic substances as inhibitors for chloride-induced corrosion in concrete.Corrosion Science, 51: 2959-2968
https://doi.org/10.1016/j.corsci.2009.08.018
Oubaaqa, M., Ouakki, M., Rbaa, M., Abousalem, A., Maatallah, M., Benhiba, F., Jarid, A., Touhami, M., Zarrouk, A. (2021) Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations.Journal of Molecular Liquids, 334: 116520-116520
https://doi.org/10.1016/j.molliq.2021.116520
Ozcan, M. (2008) AC impedance measurement of Cystine adsorption at mild steel/sulfuric acid interface as corrosion inhibitor.Journal of Solid State Electrochemistry, 12: 1653-1661
https://doi.org/10.1007/s10008-008-0551-1
Özcan, M., Karadağ, F., Dehri, I. (2008) Interfacial behavior of cysteine between mild steel and sulfuric acid as corrosion inhibitor.Acta Physico Chimica Sinic, 24, 1387-1392
https://doi.org/10.1016/S1872-1508(08)60059-5
Panchenko, Y., Arshakov, A.M. (2016) Long-term prediction of metal corrosion losses in atmosphere using a power-linear function.Corrosion Science, 109, 217-229
https://doi.org/10.1016/j.corsci.2016.04.002
Parr, R., Yang, W. (1989) Density functional theory of atoms and molecules. Oxford: Oxford University Press
Pathak, K.R.R. (2020) Open circuit potential, polarization and thermometric study of guar gum as corrosion inhibitor on mild steel by in acidic media.Asian Journal of Chemical Sciences, 8(2): 55-60
https://doi.org/10.9734/ajocs/2020/v8i219040
Qian, B., Wang, J., Zheng, M., Hou, B. (2013) Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4.Corrosion Science, 75: 184-192
https://doi.org/10.1016/j.corsci.2013.06.001
Qian, H., Chang, W., Liu, W., Cui, T., Li, Z., Guo, D., Kwok, C., Tam, L., Zhang, D. (2022) Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa.Bioelectrochemistry, 107953-107953
https://doi.org/10.1016/j.bioelechem.2021.107953
Rahiman, A., Subhashini, S. (2013) A novel watersoluble, conducting polymer composite for mild steel acid corrosion inhibition.Journal of Applied Polymer Science, 127: 3084-3092
https://doi.org/10.1002/app.37661
Rahiman, A., Subhashini, S., Rajalakshmi, R. (2013) Water soluble conducting polymer composite of polyvinyl alcohol and leucine: An effective acid corrosion inhibitor for mild steel.Werkst Korros, 64, 74-82
https://doi.org/10.1002/maco.201106096
Rahiman, A., Subhashini, S. (2017) Corrosion inhibition, adsorption and thermodynamic properties of poly(vinyl alcohol-cysteine) in molar HCl.Arabian Journal of Chemistry, 10, S3358-S3366
https://doi.org/10.1016/j.arabjc.2014.01.016
Raja, A., Rajendran, S., Satyabama, P. (2013) Inhibition of corrosion of carbon steel in well water by DL-phenylalanineʟ Zn2+ system.Journal of Chemistry, 8
https://doi.org/10.1155/2013/720965
Revie, R., Uhling, H. (2007) Corrosion and corrosion control. Wiley, fourth edition, p.1-3
https://doi.org/10.1002/9780470277270
Sarkar, T., Yadav, M., Obot, I. (2022) Mechanistic evaluation of adsorption and corrosion inhibition capabilities of novel indoline compounds for oil well/tubing steel in 15% HCl.Chemical Engineering Journal, 431: 133481-133481
https://doi.org/10.1016/j.cej.2021.133481
Saxena, A., Thakur, K., Bhardwaj, N. (2020) Electrochemical studies and surface examination of low carbon steel by applying the extract of Musa acuminata.Surfaces and Interfaces, 18, 100436
https://doi.org/10.1016/j.surfin.2020.100436
Selassie, C. (2003) History of quantitative structure activity relationships. in: Abraham, D.J. [ed.] Burger's medicinal chemistry and drug discovery, John Wiley & Sons
https://doi.org/10.1002/0471266949.bmc001
Shams, A., Din, E.L., Arain, R. (1998) Thermometric, gravimetric, and potentiometric study of corrosion of iron under conditions of reaction Fe + 2Fe3+ = 3Fe2+.British Corrosion Journal, 33 (3), 189-196
https://doi.org/10.1179/000705998798115399
Sheir, L., Jarman, R., Burstein, G. (1994) Corrosion. Great Britain: Butterworth-Heinemann
Shkirskiy, V. (2015) Corrosion inhibition of galvanized steel by LDH -inhibitor hybrids: Mechanisms of inhibitor release and corrosion reaction. Universite Pierre et Marie Curie
Shkirskiy, V., Keil, P., Hintze-Brueningb, H., Leroux, F., Brisset, F., Oglea, K., Volovitch, P. (2015) The effects of ʟ-cysteine on the inhibition and accelerated dissolution processes of zinc metal.Corrosion. Science, 100: 101-112
https://doi.org/10.1016/j.corsci.2015.07.010
Sikes, L.B.C. (1991) Corrosion inhibition by thermal Polyaspartate.ACS Symp. Ser., 444, 263-279
https://doi.org/10.1021/bk-1991-0444.ch021
Silva, A., Agostinho, S., Barcia, O., Cordeiro, G., D'elia, E. (2006) The effect of cysteine on the corrosion of 304L stainless steel in sulphuric acid.Corrosion Science, 48, 3668-3674
https://doi.org/10.1016/j.corsci.2006.02.003
Silverman, D., Kalota, D., Stover, F. (1995) Effect of pH on corrosion inhibition of steel by polyaspartic acid.Corrosion, 51: 818-825
https://doi.org/10.5006/1.3293559
Singh, A., Ansari, K., Chauhan, D., Quraishi, M., Kaya, S. (2020) Anti-corrosion investigation of pyrimidine derivatives as green and sustainable corrosion inhibitor for N80 steel in highly corrosive environment: Experimental and AFM/XPS study.Sustainable Chemistry and Pharmacy, 16: 100257-100257
https://doi.org/10.1016/j.scp.2020.100257
Singh, A., Ebenso, E. (2013) Use of glutamine as a new and effective corrosion inhibitor for mild steel in 1 M HCl solution.International Journal of Electrochemical Science, 8: 12874-12883
https://doi.org/10.1016/S1452-3981(23)13157-9
https://doi.org/10.1016/S1452-3981(23)12984-1
https://doi.org/10.1016/S1452-3981(23)13313-X
Singh, P., Bhrara, K., Singh, G. (2008) Adsorption and kinetic studies of ʟ-Leucine as an inhibitor on mild steel in acidic media.Applied Surface Science, 254, 5927-5935
https://doi.org/10.1016/j.apsusc.2008.03.154
Skoog, D., Holler, F., Crouch, S. (2007) Principles of instrumental analysis. Boston (MA): Cengage, 7th ed
Solmaz, R., Sahin, E., Döner, A., Kardas, G. (2011) The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution.Corrosion Science, 53, 3231-3240
https://doi.org/10.1016/j.corsci.2011.05.067
Solmaz, R. (2014) Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5 M HCl solution.Corrosion Science, 81, 75-84
https://doi.org/10.1016/j.corsci.2013.12.006
Solmaz, R., Kardaş, G., Yazıcı, B., Erbil, M. (2008) Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(1): 7-17
https://doi.org/10.1016/j.colsurfa.2007.06.035
Solmaz, R. (2010) Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid.Corrosion Science, 52(10), 3321-3330
https://doi.org/10.1016/j.corsci.2010.06.001
Stupnisek-Lisac, E., Loncaric, B.A., Cafuk, I. (1998) Low-toxicity copper corrosion inhibitors.Corrosion, 54 (9), 713-720
https://doi.org/10.5006/1.3284890
Sundaravadivelu, V.G.M. (2019) Non-toxic bisacodyl as an effective corrosion inhibitor for mild steel in 1 M HCl: Thermodynamic, electrochemical, SEM, EDX, AFM, FT-IR, DFT and molecular dynamics simulation studies.Journal of Molecular Liquids, 287, 110906
https://doi.org/10.1016/j.molliq.2019.110906
Taylor, C., Chandra, A., Vera, J., Sridhar, N. (2015) A multi-physics perspective on mechanistic models for chemical corrosion inhibitor performance.Journal of the Electrochemical Society, 162: 369-375
https://doi.org/10.1149/2.0801507jes
Telegdi, J., Shaban, A., Vastag, G. (2018) Biocorrosionsteel. in: Encyclopedia of interfacial chemistry, surface science and electrochemistry, 28 - 42
https://doi.org/10.1016/B978-0-12-409547-2.13591-7
Tkalenko, D.A., Venkatesvaran, G., Vishevskaya, Yu.P., Keny, S.J., Byk, M.V., Muthe, K. (2010) Inhibitory effect of cysteine in acid media.Protection of Metals and Physical Chemistry of Surfaces, 46(5): 609-614
https://doi.org/10.1134/S2070205110050199
Tribollet, O.M.B. (2017) Electrochemical impedance spectroscopy. Hoboken, NJ, USA: John Wiley & Sons
Udayappan, B., Veawab, A. (2022) Performance analysis of methionine as an environmentally friendly corrosion inhibitor for carbon steel in the amine based carbon capture process.International Journal of Greenhouse Gas Control, 114: 103565-103565
https://doi.org/10.1016/j.ijggc.2021.103565
Vaamonde, A., de Damborenea, J., González, J. (2000) Ciencia e ingeniería de la superficie de los materiales metalicos. CSIC-CSIC Press, Madrid, Spain
Venkatesha, R.S.T. (2002) New condensation products as corrosion inhibitors for mild steel in hydrochloric acid medium.Indian Journal of Engineering and Material Sciences, 9, 213-217
Verma, C, Ebenso, E., Quraishi M.(2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview, Journal of Molecular Liquids, 233, 403 -414
Downloads
Published
Issue
Section
License
Copyright (c) 2022 CC BY 4.0 by Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.