Assessing the Impact of AC, DC, and Hybrid AC/DC Stray Currents on Cathodic Protection Efficiency
DOI:
https://doi.org/10.62638/ZasMat1418Abstract
Ensuring the efficiency of cathodic protection (CP) is critical for maintaining the integrity of buried pipelines. Stray currents, particularly those originating from high-voltage power lines, can interfere with CP systems, leading to accelerated corrosion. This study investigates the effects of alternating current (AC), direct current (DC), and hybrid AC/DC stray currents on CP performance. Electrochemical measurements and finite element modeling (FEM) were employed to evaluate the impact of these currents on X70 steel pipelines. Results indicate that AC stray currents reduce CP effectiveness by shifting protection potentials to more electropositive values, increasing corrosion risk. DC stray currents affect CP voltage settings, while hybrid AC/DC interference exacerbates both effects. Findings provide insights into pipeline protection strategies, particularly in environments with mixed AC/DC stray currents.
Keywords:
AC stray current, DC stray current , hybrid AC/DC interference , corrosion, cathodic protection, finite element methodReferences
D.Lauria,M.Pagano,C.Petrarca,C.Pisani (2015) A novel approach to design cathodic protection system for high-voltage transmission cables,IEEE Trans.Ind.Appl.,51(6),5415–5420. https://doi.org/10.1109/TIA.2015.2411735
H.M.H.Farh, M.E.A.B.Seghier, T.Zayed (2023) A comprehensive review of corrosion protection and control techniques for metallic pipelines, Eng. Fail. Anal., 143, 106885. https://doi.org/10.1016/j.engfailanal.2022.106885
D.Lauria,S.Minucci,F.Mottola,M.Pagano,C.Petrarca (2018) Active cathodic protection for HV power cables in undersea application,Electr. Power Syst.Res.,163,590–598. https://doi.org/10.1016/j.epsr.2017.11.016
C.Christodoulou,G.Glass,J.Webb,S.Austin,C.Goodier (2010) Assessing the long term benefits of impressed current cathodic protection, Corros. Sci.,52(8),2671 2679. https://doi.org/10.1016/j.corsci.2010.04.018
I.D. Kim, E. C. Nho (2005) Module-type switching rectifier for cathodic protection of underground and maritime metallic structures, IEEE Trans.Ind. Electron., 52(1),181–189. https://doi.org/10.1109/TIE.2004.841094
X.H.Wang et al. (2013) Study on AC stray current corrosion law of buried steel pipelines, Appl. Mech.Mater.,263–266,448–451. https://doi.org/10.4028/www.scientific.net/AMM.263-266.448
D.Paul (2016) DC stray current in rail transit systems and cathodic protection [History],IEEEInd.Appl. Mag., 22(1),8 13. https://doi.org/10.1109/MIAS.2015.2481754.
H.Zhang,G.Karady,J.Hunt (2011) Effect of various parameters on the inductive voltage and current on pipelines, IEEE PES General Meeting, 17. https://doi.org/10.1109/PES.2011.6038882.
G.Lucca (2018) Different approaches in calculating AC inductive interference from power lines on pipelines,IET Sci. Meas.Technol.,12(6),802–806. https://doi.org/10.1049/iet-smt.2018.0086
K.B. Adedeji (2016) Effect of HVTL phase transposition on pipelines induced voltage, IJEEI, 4(2), 93–101. https://doi.org/10.52549/ijeei.v4i2.209
A.Popoli, A.Cristofolini, L.Sandrolini (2021) A numerical model for the calculation of electromagnetic interference from power lines on nonparallel underground pipelines, Math. Comput. Simul., 183,221–233. https://doi.org/10.1016/j.matcom.2020.02.015
L.Qi,H. Yuan, Y.Wu, X.Cui (2013) Calculation of overvoltage on nearby underground metal pipeline due to lightning strike on UHV AC line tower, Electr. Power Syst.Res.,94,54–63. https://doi.org/10.1016/j.epsr.2012.06.011
D.Micu, G.Christoforidis, L.Czumbil (2013) AC interference on pipelines due to double circuit power lines: A detailed study,Electr.Power Syst. Res., 103, 1–8. https://doi.org/10.1016/j.epsr.2013.04.008
F.Dawalibi (1986) Electromagnetic fields generated by overhead and buried short conductors.Part 1 - Single conductor,IEEE Trans.Power Deliv., 1(4), 105–111. https://doi.org/10.1109/TPWRD.1986.4308036
K.B.Adedeji et al. (2018) AC induced corrosion assessment of buried pipelines near HVTLs: A case study of South Africa, PIER B. https://doi.org/10.2528/PIERB18040503
C.A.Charalambous, P.Aylott (2014) Dynamic stray current evaluations on cut-and-cover sections of DC metro systems,IEEE Trans. Veh. Technol., 63(8), 3530–3538. https://doi.org/10.1109/TVT.2014.2304522
M.Ormellese, S.Beretta, F.Brugnetti, A.Brenna (2021) Effects of non-stationary stray current on carbon steel buried pipelines under cathodic protection, Constr.Build.Mater.,281,122645. https://doi.org/10.1016/j.conbuildmat.2021.122645
G.Cui, Z.L.Li, C.Yang, M.Wang (2016) The influence of DC stray current on pipeline corrosion, Pet.Sci., 13, 135–145. https://doi.org/10.1007/s12182-015-0064-3
A.Dolara, F.Foiadelli, S.Leva (2012) Stray current effects mitigation in subway tunnels,IEEE Trans. Power Deliv.,27(4),2304–2311. https://doi.org/10.1109/TPWRD.2012.2203829
A.Ogunsola, L.Sandrolini, A.Mariscotti (2015) Evaluation of stray current from a DC-electrified railway with integrated electric–electromechanical modeling and traffic simulation,IEEE Trans.Ind.Appl.,51(6),5431–5441. https://doi.org/10.1109/TIA.2015.2429642
J.V.Rodriguez, J.S.Feito (2013) Calculation of remote effects of stray currents on rail voltages in DC railway systems,IETElectr.Syst.Transp., 3(2),31–40. https://doi.org/10.1049/iet-est.2012.0022
S.Aatif,H.Hu,F.Rafiq,Z.He(2021)Analysis of rail potential and stray current in MVDC railway electrification system,Railw.Eng.Sci.,29,394–407. https://doi.org/10.1007/s40534-021-00243-0
S.Lin, Q.Zhou, X.Lin, M.Liu, A.Wang (2020) Infinitesimal method based calculation of metro stray current in multiple power supply sections,IEEE Access, 8, 96581–96591. https://doi.org/10.1109/ACCESS.2020.2994125
A.Brenna,S.Beretta,F.Bolzoni,M.Pedeferri,M.Ormellese (2017) Effects of AC-interference on chloride-induced corrosion of reinforced concrete, Constr. Build. Mater.,137,76-84. https://doi.org/10.1016/j.conbuildmat.2017.01.087
M.Ouadah,O.Touhami,R.Ibtiouen (2016) Diagnosis of the AC current densities effect on the cathodic protection performance of steel X70 for a buried pipeline due to EMI caused by HVPTL, Prog. Electromagn. Res.M.,45,163–171. https://doi.org/10.2528/PIERM15101103
M.Ouadah, O.Touhami, R.Ibtiouen (2017) Method for diagnosis of the effect of AC on the X70 pipeline due to inductive coupling caused by HVPL, IETSci. Meas. Technol.,11(6),766–772. https://doi.org/10.1049/iet-smt.2016.0519
D.Kuang, Y.F.Cheng (2017) Effects of AC interference on cathodic protection potential and its effectiveness for corrosion protection of pipelines, Corros.Eng.Sci.Technol.,52(1),22–28. https://doi.org/10.1080/1478422X.2016.1175773
A.K.Thakur, A.K.Arya, P.Sharma (2020) The science of AC-induced corrosion: A review of pipeline corrosion due to HV AC lines, Corros. Rev., 38(6), 463–472. https://doi.org/10.1515/corrrev-2020-0044
M.Ouadah, O.Touhami, R.Ibtiouen, A.Bouzida (2019) Diagnoses and mitigation of corrosion due to EMI between HVPTL and buried pipeline,IEEE CAGRE. https://doi.org/10.1109/CAGRE.2019.8713291
C.Wen, J.Li, S.Wang, Y.Yang (2015) Experimental study on stray current corrosion of coated pipeline steel,J.Nat.Gas Sci.Eng.,27(3),1555–1561. https://doi.org/10.1016/j.jngse.2015.10.022
S.A. Memon, P. Fromme (2014) Stray current corrosion and mitigation in DC transit systems,IEEE Electr.Mag.,2(3),22–31. https://doi.org/10.1109/MELE.2014.2332366
M.Ouadah, O.Touhami, R.Ibtiouen, M.F.Belmnaouar, M.Zergoug (2017) Corrosive effects of electro¬magnetic induction caused by HVPL on buried pipelines,Int.J.Electr.Power Energy Syst., 91 (2), 34–41. https://doi.org/10.1016/j.ijepes.2017.03.005
M.Ouadah, O.Touhami, R.Ibtiouen (2016) Diagnosis of AC corrosion on buried pipeline due to HV power line,J.Electr.Eng.,16(2),76–83.
R.N.Parkins, W.K.Blanchard, B.S.Delanty (1994) Transgranular SCC of high-pressure pipelines in near-neutral pH,Corrosion,50(5),394–408. https://doi.org/10.5006/1.3294348
H.H.Uhlig, R.W.Revie (1985) Corrosion and corrosion control,John Wiley,New York.
D.M.Kaufman (2003) Applying educational theory in practice,BMJ,326(7382),213–216. https://doi.org/10.1136/bmj.326.7382.213