Valorization of African Giant Land Snail Shell Waste (Archachatina marginata) By Extraction of Chitosan From it
DOI:
https://doi.org/10.62638/ZasMat1406Abstract
The African giant land snail (Archachantina marginata) is one of the most common mollusks in southern Nigeria. It has a shell that constitutes more than half of its body mass and it is usually discarded as waste. As snail meat consumption increases due to more awareness of its nutritional and health benefits, its shell wastes is expected to increase as well. The snail shell waste is highly underutilized and may cause serious environmental problems shortly if not properly channeled and harnessed for industrial production. This has become necessary considering the growing patronage of the Congo meat coupled with its shell’s negligible solubility in water, and poor biodegradability rate. The goal of the present study is to valorize snail shell wastes by extracting chitosan, a versatile and top-demanding biopolymer from it. Chitosan was extracted by chemical methods and characterized by FTIR, PXRD, and DD. The results show that snail shell chitosan is of comparable quality to commercially marketed shrimp chitosan. Snail shell chitosan has a DD value of 78.4 %, solubility of 95.35 %, moisture of 1.42 %, and ash value of 1.61 % which affirms snail shell-chitosan as a sustainable and suitable feedstock for commercial production of chitosan. The yield of chitosan based on snail shells was 14.83 % which is comparable to yield from crustacean shell wastes.
Keywords:
archachatina marginata, shell waste, chitosan, quality parameters, valorizationReferences
N. S.Thillai,N., Kalyanasundaram, S. Ravi (2017) Extraction and characterization of chitin and chitosan from Achatinodes,Nat. Prod. Chem. Res.,5, 281-284. http://dx.doi.org/10.4172/2329-6836.1000281
J.Cheng, H.Zhu, J.Huang, J.Zhao, B.Yan, S.Ma, H. Zhang, D. Fan (2020) The physicochemical properties of chitosan prepared by microwave heating,Food Sci.Nutr., 8(4), 1987-1994. http://dx.doi.org/10.1002/fsn3.1486
A.N.Amitaye, E.E.Elemike, H.B.Akpeji, E.Amitaye, I. Hossain, J. I. Mbonu, A. E. Aziza (2024) Chitosan: A sustainable biobased material for diverse applications,J. Environ. Chem. Eng., 12, 113208, http://dx.doi.org/10.1016/j.jece.2024.113208.
B.T.Iber, D.Torsabo, C.E.Chik, F.Wahab, S. Abdullah, H.B.Hassan, N. Kasan (2022) The impact of re-ordering the conventional chemical steps on the production and characterization of natural chitosan from biowaste of Black Tiger Shrimp, Penaeusmonodon, J. Sea Res., 190, 102306, https://doi.org/10.1016/j.seares.2022.102306
F.Parthiban, S.BalaSundari, A. Gopalakannan (2017) Comparison of the Quality of Chitin and Chitosan from Shrimp, Crab and Squilla Waste,Curr. World Environ., 12(3), 672-679. http://dx.doi.org/10.12944/CWE.12.3.18
T.K.Varun, S.Senani, N.Jayapal, J.Chikkerur, S.Roy, V.B.Tekulapally, M.Gautam, N.Kumar (2017) Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect,Vet. World, 10 (2), 170-175. http://dx.doi.org/0.14202/vetworld.2017.170-175
K. W.Omari, J. E.Besaw, F. M. Kerton (2012) Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation,Green Chem., 14(5), 1480–1487. https://doi.org/10.1039/C2GC35048C
M.Yanat, K.Schroen (2021) Preparationmethods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging,React. Funct. Polym., 161, 104849-52. https://doi.org/10.1016/j.reactfunctpolym.2021.104849
E. M.Costa, S.Silva, C.,Pina, F. K.Tavaria, M. M. Pintado (2012) Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens,Anaerobe, 18(3), 305-309. https://doi.org/10.1016/j.anaerobe.2012.04.009
S.Eyley, W.Thielemans (2014) Surface modification of cellulose nanocrystals. Nanoscale, 6, 7764-7779, DOI:10.1039/c4nr01756k.
W. M.Kedir, G. F.Abdi, M. M.Goro, L. D. Tolesa (2022) Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review,Heliyon, 8, 1-10, https://doi.org/10.1016/j.heliyon.2022.e10196.
I.Younes, M.Rinaudo (2015)Chitin and chitosan preparation from marine sources, structure, properties and applications,Mar. Drugs, 13(3), 1133-1174.https://doi.org/10.3390/md13031133
J.Dutta, A Priyanka (2022)Facile approach for the determination of the degree of deacetylation of chitosan using acid-base titration,Heliyon, 8(7), e09924, https://doi.org/10.1016/j.heliyon.2022.e09924.
R. N.Wijesena, N.Tissera, Y. Y.Kannangara, Y.Lin, G. A.Amaratunga, K. M. De Silva (2015) A method for top-down preparation of chitosan nanoparticles and nanofibers,Carbohydr. Polym., 117, 731–738. https://doi.org/10.1016/j.carbpol.2014.10.055
E. A.Azmy, H. E.Hashem, E. A.Mohamed, N. A. Negm (2019) Synthesis, characterization, swelling, and antimicrobial efficacies of chemically modified chitosan biopolymer,J.Mol.Liq., 284, 748-754: https://doi.org/10.1016/j.molliq.2019.04.054.
T.J.Gutiérrez (2017) Chitosan applications in textile and food industry In S. Ahmed, S. Ikram, Chitosan-derivatives, composites and applications, New York: Scrivener Publishing LLC, Wiley, 2, 185–232. https://doi.org/10.1002/9781119364894.ch8.
T.Philibert, B. H.Lee,N. Fabien (2017)Current status and new perspectives on chitin and chitosan as functional biopolymers,Appl. Biochem. Biotechnol., 181, 1314–1337. https://doi.org/10.1007/s12010-0162286-2.
V.Kumar, N.Sharma, P.Janghu, R.Pasrija, M. Umesh, P.Chakraborty,S.Sarojini, J.Thomas (2023) Synthesis and characterization of chitosan nanofibres for wound healing and drug delivery application,J. Drug Deliv.Sci. Techn.,87, 104858. https://doi.org/10.1016/j.jddst.2023.104858.
G.Martua, M.Mihai, D.C.Vodnar (2019)The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability,Polym. (Basel), 11(11), 1837. https://doi.org/10.3390/polym11111837.PMID.
H.Hamedi, S.Moradi, S.M.Hudson, A.E.Tonelli (2018) Chitosan-based hydrogels and their applications for drug delivery in wound dressings: a review,Carbohydr.Polym., 199, 445–460, https://doi.org/10.1016/j.carbpol.2018.06.114.
G.Granata, S.Stracquadanio, M.Leonardi, E. Napoli, G.Malandrino,V. Cafiso, S. Stefani, C. Geraci (2021) Oregano and thyme essential oils encapsulated in chitosan nanoparticles as effective antimicrobial agents against foodborne pathogens, Mol., 26(13), 40-55. https://doi.org/10.3390/moleculess26134055
F.Boukhlifi, A.Bencheikh, H. Ahlafi (2011) Characterization and adsorption of chitin toward copper Cu2+,Phys. Chem. News, 58, 67-72. http://dx.doi.org/10.5772/intechopen.89708
M. A.Elsawy, G. A.Saad, A. M. Sayed (2016) Mechanical, thermal, and dielectric properties of poly(lactic acid)/chitosan nanocomposites,Polym. Eng. Sci., 56, 987–994. http://dx.doi.org/10.1002/pen.24328
A. B.Pitaloka, A. H.Saputra, M. Nasikin (2013) Water Hyacinth for Superabsorbent Polymer Material,World Appl. Sci. J.,22(5), 747-754. http://dx.doi.org/10.5829/idosi.wasj.2013.22.05.262
S.Habibie, M.Hamzah, M.Anggaravidya, E. Kalembang 92016)The effect of chitosan on the physical and mechanical properties of paper. J.Chem.Eng.Mater.Sci., 7(1), 1-10. https://doi.org/10.5897/JCEMS2015.0235.
M. H.Mohammed, P. A.Williams, O. Tverezovskaya (2013)Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll., 31(2), 166–171. http://dx.doi.org/10.1016/j.foodhyd.2012.10.021
P. Ramasamy, N. Subhapradha, T. Thinesh, J. Selvin, K. M. Selvan, V. Shanmugam (2017) Characterization of bioactive chitosan and sulfated chitosanfrom Doryteuthis singhalensis (Ortmann, 1891),Int.J.Biol.Macromol., 99, 682-691. https://doi.org/10.1016/j.ijbiomac.2017.03.041
N. V. Toan (2009)Production of chitin and chitosan from partially autolyzed shrimp shell materials,Open Biomater.J., 1, 21-24. http://dx.doi.org/10.2174/1876502500901010021
F. A. Aluko, E. A. Adesina, A. M. Akanji, H. A. Awojobi, G. A. Adeleke, E. S. Apata (2017) Assessment of phenotypic traits of Archachatina marginata sututralis snails in the derived Savannah zone of Ogun State, Nigeria, Ethiop.J. Environ. Stud. Mgt,10, 1350-1356. https://doi.org/v10i10.11
T. D.Oyekunle, A. J. Omoleye (2019) New process for synthesizing chitosan from snail shells,J. Phys.Conf.Ser.,1299, 1-6. http://dx.doi.org/10.1088/1742-6596/1299/1/012089
A.A.Adekanmi, U.T.Adekanmi, A.S.Adekanmi, L.K.Ahmad, O.O.Emmanuel (2023) Production and characterization of chitosan from chitin of snail shells by sequential modification process. Afr.J. Biotechnol., 22(2), 39-53. https://doi.org/10.5897/AJB2020.17135
J.S.Chang, K.L.Chang, M.L.Tsai (2007) Liquid–crystalline behavior of chitosan in malic acid.J. Appl. Polym. Sci.,105, 2670–2675.
http://dx.doi.org/10.1002/app.26475
M. L.Tsai, S. W.Bai, R. H. Chen (2008)Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan–sodium tripolyphosphate nanoparticle. Carbohydr. Polym., 71, 448–457. https://doi.org/10.1016/j.carbpol.2007.06.015
F. Boukhlifi (2020) Quantitative Analysis by IR: Determination of Chitin/Chitosan DD, In M. Khan, G. M. Nascimento,M. El-Azazy, Modern spectroscopic techniques and applications, London: Intechopen Limited, 107-131.
K. O.Amoo, O. A.Olafadehan, T. O. Ajayi (2019) Optimization studies of chitin and chitosan production from Penaeus notialis shell waste, Afr.J. Biotechnol., 18(27), 670-688. https://doi.org/10.5897/AJB2019.16861
M.Pereda, M. I.Aranguren, N. E.Marcovich (2009) Water vapor absorption and permeability of films based on chitosan and sodium caseinate,J. Appl. Polym. Sci.,11(6), 2777-2784. http://dx.doi.org/10.1002/app.29347
T. D. Jiang (2001),Chitosan, Chemical Industry Press, Beijing, China.
C. O. Mohan, S. Gunasekaran, C. N. Ravishankar (2019) Chitosan-capped gold nanoparticles for indicating temperature abuse in frozen stored products, Sci. food, 3(2), htpps://doi.org/10.1038/s41538-019-0034-z
Y.Zhang, C.Xue, Y.Xue, R.Gao, X. Zhang (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction, Carbohydr.Res.,340, 1914-1917, https://doi.org/10.1016/j.carres.2005.05.005.
P.Zhu, Z.Gu, S.Hong, H. Lian (2017) One-pot production of chitin with high purity from lobster shells using choline chloride–malonic acid deep eutectic solvent,Carbohydr.Polym.,177, 217-223. https://doi.org/10.1016/j.carbpol.2017.09.001
A.N. Amitaye, E.E. Elemike, T.T. Uzah (2024) Multifarious Techniques for Resolving Chitosan’s Degree of Deacetylation (DD),Mater. Int.,6(2), 1-24. https://doi.org/10.33263/Materials62.01
A.Pawlak, M. Mucha (2003)Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta.,396(1–2), 153-166.
https://doi.org/10.1016/S0040-6031(02)00523-3
T. Nicolet (2001)Introduction to Fourier Transform Infrared Spectrometry, Thermo Nicolet Corporation, Madison, USA.
A.Kocyigit, M.Yilmaz, S.Aydogan, U. S. Incekara (2020) The performance of chitosan layer in Au/n-Si sandwich structures as a barrier modifier. Polym.Test., 89, 106546, https://doi.org/10.1016/j.polymertesting.2020.106546.
M. Rajkumar, K. Kavitha, M. Prabhu, N. Meenakshisundaram, V. Rajendran (2013) Nanohydroxyapatite–chitosan–gelatin polyelectro-lyte complex with enhanced mechanicaland bioactivity. Mater. Sci. Eng. C,33, 3237–3244. https://doi.org/10.1016/j.msec.2013.04.005.
K. R.Desnelli, F.Alfarado, A. Mara,M. Said (2023) Methylene blue degradation using chitosan-Fe2O3, Rev. Colomb. Quim.,52(2),36–42, https://doi.org/10.15446/rev.colomb.quim.v52n2.109625.
S.Kumari, S.H.Annamareddy, S.Abanti, P.K.Rath (2017) Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells,Int.J.Biol. Macromol., 104, 1697-1705. https://doi.org/10.1016/j.ijbiomac.2017.04.119
K. K. Sukumaran (1987) Squilla (Mantis shrimp) fishery of Karnataka state,Mar.Fish.Resour.Mgt.,18, 1-3. http://dx.doi.org/10.1016/0165-7836(93)90048-C
M.Anand, R.Kalaivani, M.Maruthupandy, A.K. Kumaraguru, S. Suresh (2014) Extraction and characterization of chitosan from marine crab and Squilla collected from the Gulf of Manner region, South India. J. Chitin chitosan Sci., 2(4), 280-287. ttps://doi.org/10.1166/jcc.2014.1053
H.K.No, S.P.Meyers (1989) Crawfish Chitosan as a coagulant in recovery of organic compounds from seafood processing streams, J. Agric. Food Chem., 37(3), 580-583. https://doi.org/10.1021/jf00087a002
K. Ssekatawa, D. K. Byarugaba, E. M. Wampande, T. N. Moja, E. Nxumalo, M. Maaza, J. Sackey, F. Ejobi, J.B.Kirabira (2021) Isolation and characterization of chitosan from Uganda edible mushrooms, Nile perch scales and banana weevils for biomedical applications, Sci Rep., 11, 4116. https://doi.org/10.1038/s41598-021-81880-7.
F.Croisier, C.Jerome (2013) Chitosan-based biomaterials for tissue engineering,Eur. Polym. J., 49(4), 780-792. https://doi.org/10.1016/j.eurpolymj.2012.12.009.
W. William, N. Wid (2019)Comparison of extraction sequence on yield and physicochemical characteristic of chitosan from shrimp shell waste, J. Phys. Conf. Ser. 1358 (1) https://doi.org/10.1088/1742-6596/1358/1/012002.
S. Pati, A. Chatterji, B. P. Dash, B. R. Nelson, T. Sarkar, S. Shahimi, H. A. Edinur, T. S. B. Abd Manan, P. Jena, Y. K. Mohanta, D. Acharya (2020) Structural characterization and antioxidant potential of chitosan by γ-irradiation from the carapace of horseshoe crab. Polymers 12 (10), 1–14. https://doi.org/10.3390/ polym12102361.
N.Subhapradha, P.Ramasamy, V.Shanmugam, P. Madeswaran, A.Srinivasan, A. Shanmugam (2013) Physicochemical characterization of beta-chitosan from Sepioteuthis lessoniana gladius, Food Chem., 141(2), 907-913. https://doi.org/10.1016/j.foodchem.2013.03.098
F. C.K. Ocloo, E. T.Quayson, A.Adu-Gyamfi, E. A. Quarcoo, D.Asare, Y.Serfor-Armah, B. K. Woode (2011) Physicochemical and functional characteristics of radiation-processed shrimp chitosan, Radiat. Phys. Chem.,80(7), 837-841. https://doi.org/10.1016/j.radphyschem.2011.03.005.
M. S.Hossain, A. Iqbal (2014) Production and characterization of chitosan from shrimp waste,J. Bangladesh Agric.Univ.,12(1), 153-160. http://dx.doi.org/10.3329/jbau.v12i1.21405
V.Mohanasrinivasan, M.Mishra, J. S.Paliwal, S. K.Singh, E.Selvarajan, V.Suganthi,C. S. Devi (2014). Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell wastes,Biotech.,4(2), 167-175. https://doi.org/10.1007/s13205-013-0140-6
P. S.Saravana, T. C.Ho, S.J.Chae, Y.J.Cho, J.S.Park, H.J.Lee,B. S. Chun (2018)Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean,Carbohydr.Polym. https://doi.org/10.1016/j.carbpol.2018.05.018.
S. O. Fernandez-Kim (2004)Physicochemical and functional properties of Crawfish chitosan as affected by different processing protocols, Graduate faculty of Seoul National University, Seoul. https://repository.lsu.edu/gradschool_theses/1338?utm_source=repository.lsu.edu%2Fgradschool_theses%2F1338&utm_medium=PDF&utm_campaign=PDFCoverPages
H. K.No, M. Y. Lee (1995)Isolation of chitin from crab shell waste. J. Korean Soc.Food Nutr., 24(1), 105-113. https://doi.org/10.1021/jf00087a001
L.Riu, M.Xie, B.Hu, L.Zhou, M.Saeeduddin, X. Zeng (2017)Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid, Carbohydr. Polym., 170, 206-216. https://doi.org/10.1016/j.carbpol.2017.04.076
F. A. Ahing, N. Wid (2016) Extraction and characterization of chitosan from shrimp shell waste in Sabah,Trans. Sci. Technol.,3(1-2), 227-237. https://doi.org/10.4236/ojopm.2018.83003
A.Wasko, P.Bulak, M. Polak-berecka, K.Nowak, C.Polakowski, A. Bieganowski (2016)The first report of the physicochemical structure of chitin isolated from Hermetia illucens,Int. J. Biol. Macromol., 92, 316-320. https://doi.org/10.1016/j.ijbiomac.2016.07.038
Y.Shigemasa, H.Matsuura, H.Sashiwa, H. Saimoto (1996)Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin,Int. J. Biol. Macromol.,18, 237-242. https://doi.org/10.1016/0141-8130(95)01079-3
M.Rinaudo, M.Milas, P. Ledung (1993) Characterization of chitosan-Influence of ionic -strength and degree of acetylation on chain expansion,Int.J. Biol.Macromol., 15(5), 281-285. https://doi.org/10.1016/0141-8130(93)90027-J
W.Wei, S. Q.Bo, S. Q.Li, Q. Wen (1991) Determination of the mark–Houwink equation for chitosans with different degrees of deacetylation, Int.J. Biol.Macromol., 13(5), 281-285.https://doi.org/10.1016/0141-8130(91)90027-r
A. N. Amitaye, E. E. Elemike, T. T. Uzah (2024) Multifarious Techniques for Resolving Chitosan’s Degree of Deacetylation (DD), Mater. Int., 6 (2), 1-24. https://doi.org/10.33263/Materials62.016
G.Lamarque, M.Cretenet, C.Viton, A. Domard (2005)The new route of deacetylation of alpha and beta-chitins using freeze-pump-out-thaw-cycles. Biomacromol.,6, 1380-1388. http://dx.doi.org/10.1021/bm049322b
M. A.Matica, F. L. Bachmann, A.Tøndervik, H. Sletta, V. Ostafe (2019)Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action,Int.J.Mol.Sci.,20, 5889. https://doi.org/10.3390/ijms20235889.
J.Kumirska, M. X.Weinhold, J.Thoming, P. Stepnowski (2011) Biomedical activity of chitin/ chitosan-based materials-Influence of physic-ochemical properties apart from molecular weight and degree of N-acetylation,Polym., 3, 1875-1901. https://doi.org/10.3390/polym3041875