Ballistic Evaluation of Body Armour for Defence Application
DOI:
https://doi.org/10.62638/ZasMat1210Abstract
Bullet-resistant jackets (BRJs) and Bullet-resistant helmets (BRHs) serve as crucial protective gear for military and law enforcement personnel, offering critical defence against ballistic threats. Various inspection and testing protocols are employed to ensure the reliability and efficacy of materials used in the construction of BRJs and bullet-resistant helmets. The study begins with an overview of the various materials commonly utilized in the manufacturing of BRJs and helmets, including aramid fibers, ceramics, and composite materials. Visual inspections aid in identifying surface irregularities and defects, while NDT techniques such as ultrasonic testing and radiography help reveal internal flaws that might compromise the integrity of the protective gear. Furthermore, the study delves into the testing procedures essential for evaluating the ballistic resistance of these materials along with addressing the importance of compliance with industry standards and certification requirements emphasizing the significance of rigorous inspection and testing protocols in maintaining the quality and reliability of materials used in the production of BRJs and bullet-resistant helmets. Implementing robust examination techniques and adhering to standardized testing procedures are imperative to ensure the safety and protection of individuals relying on this specialized equipment in high-risk environments.
Keywords:
protective gear, aramid fibers, ballistic threatsReferences
J. Breeze, E. A. Lewis, D. J. Carr (2017) Ballistic threats and body armour design. Military injury biomechanics: the cause and prevention of impact injuries, 1-14. https://doi.org/10.1201/9781315151731-3
S. Kant, T. Joshi, R. Sharma (2021)Modeling and Analysis of Composite Bullet-Resistant Jacket. Advances in Engineering Design: Select Proceedings of flame 2020 375-386, Springer Singapore. https://doi.org/10.1007/978-981-33-4684-0_38
J. M. Tavares (2022) Bullet Block Experiment: Angular Momentum Conservation and Kinetic Energy Dissipation.Offbeat Physics, 199-214 https://doi.org/10.1201/9781003187103-14
J. L. Park, Y. S. Chi, M. H. Hahn , T. J. Kang (2012) Kinetic dissipation in ballistic tests of soft body armors. Experimental mechanics, 52, 1239-1250. https://doi.org/10.1007/s11340-011-9583-z
G. Cooper, P. Gotts (2005) Ballistic protection. Ballistic Trauma: A Practical Guide, 67-90. https://doi.org/10.1007/1-84628-060-5_4
M. Barcikowski (2008) Glass fibre/polyester composites under ballistic impact.Kompozyty, 8(1), 70-76.
S. G. Kulkarni, X. L. Gao, S. E.Horner, J. Q. Zheng, N. V. David (2013) Ballistic helmets - Their design, materials, and performance against traumatic brain injury. Composite Structures, 101, 313-331. https://doi.org/10.1016/j.compstruct.2013.02.014
T. A. Hassan, V. K. Rangari, S. Jeelani (2010) Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites. Materials Science and Engineering, 527(12), 2892-2899. https://doi.org/10.1016/j.msea.2010.01.018
D. J. Spinelli, T. A. Plaisted, E. D. Wetzel (2018) Adaptive head impact protection via a rate-activated helmet suspension. Materials & Design, 154,153-169. https://doi.org/10.1016/j.matdes.2018.04.083
I. Horsfall (2012) Key issues in body armour: threats, materials and design. Advances in Military Textiles and Personal Equipment, 3-20. https://doi.org/10.1533/9780857095572.1.3
Z. Cai, X. Huang, Y. Xia, G. Li, Z. Fan (2020) Study on Behind Helmet Blunt Trauma Caused by High-Speed Bullet. Applied Bionics and Biomechanics, 23,1-12. https://doi.org/10.1155/2020/2348064
L. Cannon (2001), Behind armour blunt trauma - an emerging problem, Journal of the Royal Army Medical Corps, 147 (1), 87-96. https://doi.org/10.1136/jramc-147-01-09
C. J. Freitas, J. T. Mathis, N. Scott, R. P. Bigger, J. Mackiewicz (2014) Dynamic response due to behind helmet blunt trauma measured with a human head surrogate, International Journal of Medical Sciences, 11(5), 409-425. https://doi.org/10.7150/ijms.8079
M. Jassal, S. Ghosh (2002) Aramid fibres-An overview, Indian Journal of Fibre and textile Research, 27, 290-306
R. Stopforth, S.Adali (2018) Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles. Defence Technology, 15 (2), 186-192. https://doi.org/10.1016/j.dt.2018.08.006
M. Karbalaie, M. Yazdanirad, A. Mirhabibi (2012) High performance Dyneema® fiber laminate for impact resistance/macro structural composites. Journal of Thermoplastic Composite Materials, 25(4), 403-414. https://doi.org/10.1177/0892705711411339
H. A. K. Abouzaid (2021)An investigation into the functional properties of Kevlar and Dyneema fabrics used as bulletproof. International Design Journal, 11(6), 331-337. https://doi.org/10.21608/idj.2021.205130
M. Bajya, A. Majumdar, B. S. Butola (2023) A review on current status and development possibilities of soft armour panel assembly.Journal of Materials Science, 58(38), 14997-15020. https://doi.org/10.1007/s10853-023-08961-y
J. Bao, Y. Wang, X. Cheng, F. Wang, H. Cheng (2024) Ballistic properties of silicon carbide ceramic under weak support conditions. Journal of Materials Research and Technology, 28, 1764-1773. https://doi.org/10.1016/j.jmrt.2023.12.035
P. H. P. M. D. Silveira, T. T. D. Silva, M. P. Ribeiro, P. R. Rodrigues de Jesus, P. C. R. D. S. Credmann, A. V. Gomes (2021) A brief review of alumina, silicon carbide and boron carbide ceramic materials for ballistic applications. Acad. Lett, 3742, 1-11. https://doi.org/10.20935/AL3742
N. Naik, S. Kumar, D.Ratnaveer, M. Joshi, K. Akella (2012) An energy-based model for ballistic impact analysis of ceramic-composite armors. International Journal of Damage Mechanics, 22(2), 145-187. https://doi.org/10.1177/1056789511435346
H. L. Gower, D. S. Cronin, A. Plumtree (2008), Ballistic impact response of laminated composite panels. International Journal of Impact Engineering, 35(9),1000-1008. https://doi.org/10.1016/j.ijimpeng.2007.07.007
J. Van Hoof, D. S. Cronin, M. J. Worswick, K. V. Williams, D. Nandlall (2001), Numerical head and composite helmet models to predict blunt trauma. 19th International Symposium of Ballistics, 921-928.
R. Stopforthand, S. Adali (2019) Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles.Defence Technology, 15(2),186-192. https://doi.org/10.1016/j.dt.2018.08.006
S. Mitra, L. K. Behera (2020) Enhancing the Effectiveness of Defence Indigenization: The Case of Bullet-Resistant Jackets. Strategic Analysis, 44(6), 553-569. https://doi.org/10.1080/09700161.2020.1841102
D. Pacek, P. Zochowski, A. Wisniewski (2016),Anti-trauma pads based on non-Newtonian materials for flexible bulletproof inserts.Proceedings of the 29th International Symposium on Ballistics, Scotland, UK, 9-13.
L. Cannon (2001), Behind armour blunt trauma-an emerging problem. BMJ Military Health, 147(1), 87-96. https://doi.org/10.1136/jramc-147-01-09
P. K. Stefanopoulos, G. F. Hadjigeorgiou, K. Filippakis, D. Gyftokostas (2014) Gunshot wounds: a review of ballistics related to penetrating trauma. Journal of Acute Disease, 3(3), 178-185. https://doi.org/10.1016/S2221-6189(14)60041-X
W. Swiderski, M. Pracht, June (2016) Ultrasonic IR thermography detection of defects in multi-layered aramide composites.Proc. of 19th World Conference on Non-Destructive Testing. https://doi.org/10.1117/12.2277110
I. G. Crouch and B. Eu (2017), Ballistic testing methodologies.The Science of Armour Materials, 639-673. https://doi.org/10.1016/B978-0-08-100704-4.00011-6
M. El Messiry, S. El-Tarfawy (2015), Performance of weave structure multi-layer bulletproof flexible armor. Proceedings of the 3rd Conference of the National Campaign for Textile Industries, NRC Cairo,Recent Manufacturing Technologies and Human and Administrative Development", Cairo, Egypt, 9-10.
W. Kerkhoff, M. J. Glardon, C. Schyma, I.Alberink, R. J. Oostra, F. Riva (2023),The influence of impact velocity on bullet trajectory deflection through ballistic gelatine. Forensic science international, 346, 111675. https://doi.org/10.1016/j.forsciint.2023.111675
Y. Li, H. Fan, X. L. Gao (2022) Ballistic helmets: Recent advances in materials, protection mechanisms, performance, and head injury mitigation. Composites Part B: Engineering, 238, 109890. https://doi.org/10.1016/j.compositesb.2022.109890
M. Fejdyś, M. Łandwijt, W. Habaj, M. H. Struszczyk (2015), Ballistic helmet development using UHMWPE fibrous materials. Fibres & Textiles in Eastern Europe, 23, 1(109), 89-97.
L. Chang, Y. Guo, X. Huang, Y. Xia, Z. Cai (2021), Experimental study on the protective performance of bulletproof plate and padding materials under ballistic impact. Materials & Design, 207, 109841. https://doi.org/10.1016/j.matdes.2021.109841
S. H. Gu, K. M. Kim, J. H. Park, S. H. Song (2019), A Study on Improvement of Ballistic Testing Method for Combat Helmet. Journal of Korean Society for Quality Management, 47(2), 283-294.