Comparative study of various volcanic materials as fillers in polymer composites

Authors

  • Liubov Melnyk Department of Chemical Technology of Composite Materials, National Technical University of Ukraine Author
  • Lev Chernyak Department of Chemical Technology of Composite Materials, National Technical University of Ukraine Author
  • Valentin Sviderskyy Department of Chemical Technology of Composite Materials, National Technical University of Ukraine Author
  • Ludmila Vovchenko Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine Author
  • Viktoria Yevpak Department of Chemical Technology of Composite Materials, National Technical University of Ukraine Author

DOI:

https://doi.org/10.62638/ZasMat1171

Keywords:

composite, filler, perlite, zeolite, concentration, copolymer, porosity, properties

Abstract

The object of the study was composite materials using rocks of volcanic origin as a filler (60-90 wt.%) and aqueous dispersions of polymers Latex 2012 and Policril 590 as a matrix. The peculiarities of the chemical and mineralogical composition and surface properties of perlite and zeolite as factors of interaction with the binder in the formation of the composite structure are shown. Differences in lyophilicity coefficients and effective specific surface of zeolite and perlite were determined, which are 0.318 versus 0.189 and 11.68 versus 2.20 m2/g, respectively. The influence of a high concentration of fillers on the formation of the pore structure and indicators of physical and mechanical properties of composites is evaluated. The possibility of adjusting the properties of the composites in the following range was established: water absorption in the range of 2.63-14.16 wt.%, open porosity 3.58-21.35 %, residual strain 0.1-0.3, Young’s modulus 19.7-677.5 MPa.

References

Grove, S. (2018). Composite Materials and Structures for Engineering Students. Kindle Direct Publishing.

Melnуk, L. (2017). Research of electrical properties of epoxy composite with carbon fillers. Technology Audit and Production Reserves, 3(1(35)), 28-34. https://doi.org/10.15587/2312-8372.2017.104807.

Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002.

Tarhan, B., & Tarhan, M. (2021). Utilization of perlite as an alternative raw material in the production of ceramic sanitaryware. Journal of Thermal Analysis and Calorimetry, 147(5), 3509-3518. https://doi.org/10.1007/s10973-021-10784-5.

Rothon, R. (2017). Fillers for polymer applications. Springer.

Kumar, T. V., Chandrasekaran, M., Mohanraj, P., Balasubramanian, R., Muraliraja, R., & Shaisundaram, V. (2018). Fillers preparation for polymer composite and its properties – a review. International Journal of Engineering & Technology, 7(3.3), 212. https://doi.org/10.14419/ijet.v7i2.33.13889.

Rothon, R. N. (2002). Particulate fillers for polymers. iSmithers Rapra Publishing.

Kaczmar, J. W., Pach, J., & Kozłowski, R. (2007). Use of natural fibres as fillers for polymer composites. International Polymer Science and Technology, 34(6), 45-50. https://doi.org/10.1177/0307174x0703400610.

Melnyk, L.I. (2009). Patterns of formation and application of heat-resistant conductive siloxane-graphite materials. Dissertation abstract.

Uzun, İ., & Terzi, S. (2012). Evaluation of andesite waste as mineral filler in asphaltic concrete mixture. Construction and Building Materials, 31, 284-288. https://doi.org/10.1016/j.conbuildmat.2011.12.093.

Melnyk, L., Chernyak, L. P., Sviderskyy, V., Belousov, O. A., & Nehreyko, A. (2020). Structure and properties of polymer composite based on natural zeolite. French-Ukrainian Journal of Chemistry, 8(1), 12-18. https://doi.org/10.17721/fujcv8i1p12-18.

Mohamed, A., Basfar, S., Elkatatny, S., & Bageri, B. (2020). Impact of Perlite on the properties and stability of Water-Based mud in Elevated-Temperature Applications. ACS Omega, 5(50), 32573-32582. https://doi.org/10.1021/acsomega.0c04853.

Sukhovi, A., Chursina, L., Tikhosova, G., & Nezhlukchenko, N. (2020). New fillers for polymer composite materials. Bulletin of the Kherson National Technical University, 2(73), 61-68. https://doi.org/10.35546/kntu2078-4481.2020.2.7.

Khoshraftar, Z., Masoumi, H., & Ghaemi, A. (2023). On the performance of perlite as a mineral adsorbent for heavy metals ions and dye removal from industrial wastewater: A review of the state of the art. Case Studies in Chemical and Environmental Engineering, 8, 100385. https://doi.org/10.1016/j.cscee.2023.10038

Binici, Hanifi, & Firdevs, Kalaycı. (2015). Production of perlite based thermal insulating material. International Journal of Academic Research and Reflection, 3(7), 47-54.

Narayanan, S., Batchelor, W., & Webley, P. A. (2013). A review on the use of zeolites to create valuable paper products and paper-like adsorbent materials. Appita Journal, 66(3), 235-245.

Mumpton, F. A. (1981). Mineralogy and geology of natural zeolites.

Mumpton, F. A. (1977). Mineralogy and Geology of Natural Zeolites. Brockport.

Bačáková, L., Vandrovcová, M., Kopová, I., & Jirka, I. (2018). Applications of zeolites in biotechnology and medicine – a review. Biomaterials Science, 6(5), 974-989. https://doi.org/10.1039/c8bm00028j.

Maxim, L., Niebo, R., & McConnell, E. E. (2014). Perlite toxicology and epidemiology – a review. Inhalation Toxicology, 26(5), 259-270. https://doi.org/10.3109/08958378.2014.881940.

Barczewski, M., Hejna, A., Kosmela, P., Mysiukiewicz, O., Piasecki, A., & Sa£asiñska, K. (2022). High-density Polyethylene - Expanded Perlite Composites: Structural Oriented Analysis of Mechanical and Thermomechanical Properties. Materiale Plastice, 59(3), 52-63. https://doi.org/10.37358/mp.22.3.5605.

Spoerk, M., Sapkota, J., Weingrill, G., Fischinger, T., Arbeiter, F., & Holzer, C. (2017). Shrinkage and warpage optimization of expanded‐perlite‐filled polypropylene composites in extrusion‐based additive manufacturing. Macromolecular materials and engineering, 302(10), 1700143.

Page, A. L., Elseewi, A. A., & Straughan, I. R. (1979). Physical and chemical properties of fly ash from coal-fired power plants with reference to environmental impacts. In Residue Reviews: Residues of Pesticides and Other Contaminants in the Total Environment (pp. 83-120). Springer New York.

Melnyk, L., & Chernyak, L. (2022). Analysis of volcanic rocks as fillers for polymer composites. Modern Engineering and Innovative Technologies, 22(01), 42-46. https://doi.org/10.30890/2567-5273.2022-22-01-008.

Fischer, E., Cuccato, D., Storti, G., & Morbidelli, M. (2018). Effect of the charge interactions on the composition behavior of acrylamide/acrylic acid copolymerization in aqueous medium. European Polymer Journal, 98, 302-312. https://doi.org/10.1016/j.eurpolymj.2017.11.022.

Yakovleva, Y. A., Barykin, N. A., & Eltsov, O. S. (2016). Identification of the monomeric composition of poly(styrene)acrylates. Chimica Techno Acta, 3(3), 193-212. https://doi.org/10.15826/chimtech.2016.3.3.014.

Guo, T., Song, J., Jin, Y., Sun, Z., & Li, L. (2019). Thermally stable and green cellulose-based composites strengthened by styrene-co-acrylate latex for lithium-ion battery separators. Carbohydrate Polymers, 206, 801-810. https://doi.org/10.1016/j.carbpol.2018.11.025.

Downloads

Published

18-07-2024

Issue

Section

Scientific paper