Studies of structural and optical properties of sputtered SiC thin films

Authors

  • Mukesh Kumar Mukesh Kumar Department of Physics, Multanimal Modi College Modinagar, Ghaziabad, UP 201204, India Author

DOI:

https://doi.org/10.62638/ZasMat1143

Abstract

The present study explored the deposition of amorphous silicon carbide (a-SiC) thin films on Si (100) and glass substrates using RF-magnetron sputtering. The sputtering power is changed from 100 to 250 W to study its influence on the characteristics of a-SiC thin films. Raman spectroscopy reveals the formation of a-SiC as well as carbon clusters. The film deposited at 100 W clearly shows the presence of both transverse optical (TO) and longitudinal optical (LO) phonon modes. The average roughness of the a-SiC films found to follow an increasing trend with increase in the sputtering power. The optical band gap of the a-SiC films measured by UV-Visible spectrophotometer was found to increase up to 2.45 eV with decrease in sputtering power. All a-SiC thin films were highly transparent. The Photoluminescence (PL) spectroscopy results were in agreement with the data observed by UV-Visible spectroscopy

References

J.C.Zopler, M.Skowronski (2005). Advances in Silicon Carbide Electronics, Mater. Res. Soc. Bull. 30. 273-278.

https://doi.org/10.1557/mrs2005.73

H.Morkoc, S.Strite, G.B.Gao, M.E.Lin, B.Sverdlov, M.Burns (1994) Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies, Journal of Applied Physics 76(3), 1363-1398.

https://doi.org/10.1063/1.358463

B.Delley, E.F.Steigmeier (1993) Quantum confinement in Si nanocrystals, Phys. Rev. B, 47, 1397.

https://doi.org/10.1103/PhysRevB.47.1397

L.Tsykeskov, J.V.Vandyshev, P.M.Fauchet (1994) Blue emission in porous silicon: Oxygen-related photoluminescence, Phys. Rev. B, 49, 7821 (R).

https://doi.org/10.1103/PhysRevB.49.7821

M.A.Baker, M.A.Monclus, C.Rebholz, P.N.Gibson, A.Leyland, A.Matthews (2010) A study of the nanostructure and hardness of electron beam evaporated TiAlBN coatings, Thin Solid Films 518, 4273-4280.

https://doi.org/10.1016/j.tsf.2009.12.109

D.A.Anderson, W.E.Spear (1977) Electrical and optical properties of amorphous silicon carbide, silicon nitride and germanium carbide prepared by the glow discharge technique, The Philosophical Magazine: A Journal of Theoretical Exp. and App. Phys 35(1), 1-16.

https://doi.org/10.1080/14786437708235967

M.Künle, T.Kaltenbach, P.Löper, A.Hartel, S.Janz, O.Eibl, K.G.Nickel (2010) Si-rich a-SiC:H thin films: Structural and optical transformations during thermal annealing, Thin Solid Films, 519(1), 151-157.

https://doi.org/10.1016/j.tsf.2010.07.085

W.S.Choi, B.Hong (2008) The effect of annealing on the properties of diamond-like carbon protective antireflection coatings, Renewable Energy, 33(2), 226-231.

https://doi.org/10.1016/j.renene.2007.05.022

I.Golecki, F.Reidinger, J.Marti (1992) Single‐crystalline, epitaxial cubic SiC films grown on (100) Si at 750° C by chemical vapor deposition, Appl. Phys. Lett. 60 (14), 1703-1705.

https://doi.org/10.1063/1.107191

T.Nishiguchi, M.Nakamura, K.Nishio, T.Isshiki, S. Nishino (2004). Heteroepitaxial growth of (111) 3C-SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition, Appl Phys. Lett. 84 (16), 3082.

https://doi.org/10.1063/1.1719270

M.Kumar, R.Chandra, M.S.Goyat, R.Mishra, R.K. Tiwari, A.K.Saxena (2015) Structural and magnetic properties of pulsed laser deposited Fe-SiC thin films, Thin solid films, 579, 64-67.

https://doi.org/10.1016/j.tsf.2015.02.012

T.Kusumori, H.Muto (2003) Influence of argon gas pressure on the crystallinity of α-SiC epitaxial films fabricated by Nd: YAG pulsed-laser deposition, Optical Materials 23(1), 55-60.

https://doi.org/10.1016/S0925-3467(03)00059-4

A.J.Steckl, J.Devrajan, C.Tran, R.A.Stall (1996) SiC rapid thermal carbonization of the (111) Si semiconductor‐on‐insulator structure and subsequent metalorganic chemical vapor deposition of GaN, Appl. Phys. Lett. 69 (15), 2264-2266.

https://doi.org/10.1063/1.117528

H.Nakazawa, M.Suemitsu (2001) Low-temperature formation of an interfacial buffer layer using monomethylsilane for 3C-SiC/Si (100) heteroepitaxy, Appl. Phys. Lett. 79, 755-757.

https://doi.org/10.1063/1.1390476

Z.D.Sha, X.M.Wu, L.J.Zhuge (2005) Structure and photoluminescence properties of SiC films synthesized by the RF-magnetron sputtering technique, Vacuum, 79(3-4), 250-254.

https://doi.org/10.1016/j.vacuum.2005.04.003

M.Liu, Y.Yang, Q.Mao, Y.Wei, Y.Li, N.Ma, H.Liu, X. Liu, Z.Huang (2021) Influence of radio frequency magnetron sputtering parameters on the structure and performance of SiC films, Ceramics International, 47(17), 24098-24105.

https://doi.org/10.1016/j.ceramint.2021.05.120

M.Kumar, Y.K.Gautam, R.Chandra, M.S.Goyat, B.S.Tewari, R.K.Tewari (2020) Influence of SiC thin films thickness on the electrical properties of Pd/SiC thin films for hydrogen gas sensor, Vacuum, 182, 109750.

https://doi.org/10.1016/j.vacuum.2020.109750

A.Costa, S.Camargo (2003) Amorphous SiC coatings for WC cutting tools, Surface and coatings technology, 163-164, 176-180.

https://doi.org/10.1016/S0257-8972(02)00486-3

Z.Xia, S.Huang (2010) Structural and photoluminescence properties of silicon nanocrystals embedded in SiC matrix prepared by magnetron sputtering, Solid State Communications, 150(19-20), 914-918.

https://doi.org/10.1016/j.ssc.2010.02.032

F.Neri, S.Trusso, C.Vasi, F.Barreca, P.Valisa (1998) Raman microscopy study of pulsed laser ablation deposited silicon carbide films,Thin Solid Films, 332(1-2), 290-294.

https://doi.org/10.1016/S0040-6090(98)00994-8

R.A.Simao, A.K.Costa, C.A.Achete, S.S.Camargo (2000) Magnetron sputtering SiC films investigated by AFM, Thin Solid Films, 377-378, 490-494.

https://doi.org/10.1016/S0040-6090(00)01371-7

H.Tang, S.Tan, Z.Huang, S.Dong, D.Jiang (2005) Surface morphology of α-SIC coatings deposited by RF magnetron sputtering, Surface & Coatings Technology, 197(2-3) 161-167.

https://doi.org/10.1016/j.surfcoat.2004.11.036

M.Kumar, R.Chandra, R.Mishra, R.K.Tiwari, A.K. Saxena (2012) Effect of Sputtering Gas on Structural and Optical Properties of Sputtered SiC Thin Films, AIP Conf. Proc. 1451, 260.

https://doi.org/10.1063/1.4732434

J.K.Seo, Ki-han Ko, W.S.Choi, M.Park, J.H.Lee, J. S.Yi (2011) The effect of deposition RF power on the SiC passivation layer synthesized by an RF magnetron sputtering method, Journal of Crystal Growth 326(1),183-185.

https://doi.org/10.1016/j.jcrysgro.2011.01.093

J.Tauc, (Ed.) (1974) Amorphous, Liquid Semiconductor, Plenum Press, New York, p.159.

https://doi.org/10.1007/978-1-4615-8705-7_4

N.M.A.Rashid, R.Ritikos, M.Othman, N.H.Khanis, S. M.A.Gani, M.R.Muhamad, S.A.Rahman (2013) Amorphous silicon carbon films prepared by hybrid plasma enhanced chemical vapor/sputtering deposition system: Effects of r.f. power, Thin Solid Films, 529, 459-463.

https://doi.org/10.1016/j.tsf.2012.09.032

D.Chen, Z.M.Liao, L.Wang, H.Z.Wang, F.Zhao, W.Y.Cheung, S.P. Wong (2003). Photolumine-scence from β-SiC nanocrystals embedded in SiO2 films prepared by ion implantation, Optical Materials 23(1-2), 65-69.

https://doi.org/10.1016/S0925-3467(03)00061-2

Downloads

Published

15-06-2024

Issue

Section

Scientific paper