NiO/MnO2 nanocomposite in addition of layered Reduced Graphene oxide (RGO) electrode for accountable supercapacitor application
DOI:
https://doi.org/10.62638/ZasMat1120Keywords:
Reduced Graphene Oxide (RGO), NiO/MnO2 nanocomposite, pseudo- capacitor, cyclic voltammograms, SupercapacitorAbstract
Reduced Graphene oxide/Nickel oxide/Magnesium dioxide) RGO/NiO/MnO2 nanocomposite electrode was successfully prepared by simple co-precipitation method. The synthesised nanocomposite was characterised by XRD, FESEM, EDAX, FTIR, UV, CV, GCD, EIS. The RGO/NiO/MnO2 nanocomposite was pretreated by ultrasonication, followed by thermal annealing at 350 oC. The crystalline face and size of nanocomposite were analysed by X-Ray Diffraction (XRD). The sandwich-like structure of RGO/NiO/MnO2 was analysed by Scanning Electron Microscope (SEM). This structure promoted an efficient contact between electrolyte and active materials, and the distinct architecture could offer fast transfer channels of ion and electrons. The nanocomposite exhibited high conductivity owing to the presence of RGO. The electrochemical performance of prepared nanocomposite was done by Cyclic Voltammetry (CV), Galvanostatic charge discharge (GCD), Electrical Impedance Spectroscopy (EIS). The synthesised RGO/NiO/MnO2 nanocomposite acquired high specific capacitance of 1167F/g at current density of 1 A/g. The low cost, low temperature RGO/NiO/MnO2 nanocomposite electrode could be the promising electrode for Energy storage devices.
References
N.A.Salleh, S.Kheawhom, N.A.A.Hamid (2023) Electrode polymer binders for supercapacitor applications: A review, J. of materials research and technology.,23, 3470-3491. https://doi.org/10.1016/ j.jmrt.2023.02.013
S.Kalaiarasi, S.Shyamala, M.Kavitha (2022) Electrochemical performance of r- graphene oxide based MnO2 nanocomposite for supercapacitor, nanosystems: Phys. Chem. Math., 13 (3), 320–330. DOI http://dx.doi.org/10.17586/2220-8054-2022-13-3-320-330
S.J.Park, Y.R.Son, Y.J.Heo (2018) Prospective Synthesis Approaches to Emerging Materials for Supercapacitor, Emerging Materials for Energy Conversionand Storage.,6,185-208. https://doi.org/ 10. 1016/B978-0-12- 813794-9.00006
C.An, Y.Zhang, H.Guo, Y.Wang (2019) Metal oxide-based supercapacitors: progress and prospectives, Nanoscale Advances., 12, 4644-4659. https://doi.org/10.1039/C9NA00543A
R.Kumar, R.Thangappan (2022) Electrode material based on reduced graphene oxide (rGO)/transition metal oxide composites for supercapacitor applications: a review, Emergent Materials .,5, 1881–1897. https://doi.org/10. 1007/s42247-021-00339-7
S.Tamang, S.Rai, R.Bhujel (2023) A concise review on GO, rGO and metal oxide/rGO composites: Fabrication and their supercapacitor and catalytic applications, Journal of Alloys and Compounds., 947, 169588. https://doi.org/10. 1016/ j.jallcom.2023.169588.
S.Rusi , R.Majid (2015) Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors, Sci Rep 5., 16195. https://doi.org/10.1038/srep16195
R.Rajeswari, A.Kavitha, B.Ananda, P.H. Gurumallesh (2021) A Review on Graphene Based Metal/Metal Oxide Composites and Enhanced Properties along with Biomedical Applications, Nano Res Appl .,7,3-6. doi: 10.1007/s40820-018-0206-4
S.M.Majhi, A.Mirzaei, H.W.Kim, S.S.Kim (2021) Reduced Graphene Oxide (rGO)-Loaded Metal-Oxide Nanofiber Gas Sensors: An Overview, Sensors (Basel)., 21(4), 1352. https://doi.org/ 10.3390%2Fs21041352
S.Yadav, N.Rani, K.Saini (2022) A review on transition metal oxides based nanocomposites, their synthesis techniques, different morphologies and potential applications, IOP Conf. Ser.: Mater. Sci. Eng., 1225 012004.doi:10.1088/1757- 899X/1225/ 1/012004
D.Selvakumar, P.Nagaraju, R.Jayavel (2018) Graphene-Metal Oxide based Nanocomposites for Supercapacitor Applications. Advanced Materials: TechConnect Briefs., p.70–73.Graphene-Metal Oxide Based Nanocomposites for Supercapacitor Applications
N. S.Alsaiari, M.Ahmad, I.Shaheen, I. Ali , U.Amara (2023) Three-dimensional flower-like nanocom-posites based on ZnO/NiO as effective electrode materials for supercapacitors, Journal of Electroanalytical Chemistry., 930, 11715. https://doi.org/10.1016/j.jelechem.2023.117158
M.Shariq, A. BaQais, T.M.Althagafi, O.Madkhali, A. A.Alholaisi, S.Hussain , Y.Javed (2023) Synthesis of Co3O4/NiO nanospherical composites as electrode material for high-performance supercapacitors, Eur. Phys. J. Plus., 138, 389 . https://doi.org/10.1140/epjp/s13360-023-04001-5
G.Mummoorthi, S.Shajahan, M.A.Haija, U. Mahalingam, R.Rajendran (2022) Synthesis and Characterization of Ternary α-Fe2O3/NiO/rGO Composite for High- Performance Supercapacitors, ACS Omega., 7, 31, 27390–27399. https://doi.org/10.1021/acsomega.2c02418
Q.An, X.Zhao, S.Bai (2021) Novel Lithium-Ion Capacitor Based on a NiO-rGO Composite, Materials ., 14(13),3586. https://doi.org/10.3390/ ma14133586
O.C.Pore, A.V.Fulari, V.G.Parale, H.H.Park, R. V. Shejwal, V.J.Fulari, G.M.Lohar (2022) Facile hydrothermal synthesis of NiO/rGO nanocomposite electrodes for supercapacitor and nonenzymatic glucose biosensing application. J.of Porous Materials., 29(6), 1991-2001. https://doi.org/ 10.1007/s10934-022-01313-2
S.Seenivasan, S.Dhinesh, F.Maiz, M.Shkir (2023) Electrochemical investigation of NiO@MnO2@rGO ternary nanocomposite-based electrode material for high-performance supercapacitor applications, Ionics., 29, 3641–3652. https://doi.org/10.1007/ s11581-023-05110-y
N.Duraisamy, K.Kandiah., R.Rajendran (2018) Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment, Res Chem Intermed .,44, 5653–5667 . https://doi.org/10.1007/s11164- 018-3446-5
S.A.Soomro, I.H.Gul, H.Naseer, S.Marwat (2019) Improved Performance of CuFe2O4/rGO Nanohybrid as an Anode Material for Lithium-ion Batteries Prepared Via Facile One-step Method, Current Nanoscience., 4, 15, 420-429(10). https://doi.org/10.2174/157341371466618111512201610.
P .A .Mikhaylov, M. I. Vinogradov , I .S .Levin, G. A. Shandryuk, A.V.Lubenchenko, V.G.Kulichikhin (2019) Synthesis and characterization of polyethylene terephthalate reduced graphene oxide composites, IOP Conf. Series: Materials Science and Engineering., 693, 012036. 10.1088/1757-899X/693/1/012036.
Y.Zhang , Y.Shen , X.Xie , W.Du, L. K,Y,Wang , X. Sun , Z.Li , B.Wang (2020) One-step synthesis of the reduced graphene oxide@NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis, Materials & Design., 196,109111. https://doi.org/10.1016/j.matdes. 2020. 109111
T.G. Vladkova, I.A.Ivanova , A. D. Staneva , M. G. Albu, A.S. A. Shalaby , T. I. Topousova, A. S. Kostadinova (2017) Preparation and Biological Activity of New Collagen Composites Part II: Collagen/Reduced Graphene Oxide Composites, Journal of Archives in Military Medicine.,5, 1 e13223. doi: 10.1007/s12010-016- 2092-x.
J.Xu , L.Wu, Y.Liu et al. (2020) NiO-rGO composite for supercapacitor electrode, Surfaces and Interfaces., 18, 100420 . https://doi.org/10.1016/ j.surfin.2019.100420
T.R.Madhura, G.G.Kumar, R.Ramaraj (2020) Reduced graphene oxide supported 2D-NiO nanosheets modified electrode for urea detection, J Solid State Electrochem, 24, 3073–3081. https://doi.org/10.1007/s10008-020-04763-3
H.Zhu, X.Zeng (2019) A nickel oxide nanoflakes/reduced graphene oxide composite and its high-performance lithium-storage properties, J Solid State Electrochem., 23, 2173–2180 . https://doi.org/10.1007/s10008-019-04281-x
B.S.Singu, K.R.Yoon (2017) Synthesis and characterization of MnO2- decorated graphene for supercapacitors. Electrochimica Acta., 231, 749-758. https://doi.org/10.1016/j.electacta.2017.01.182
A.Khana , H. Wangb , Y. Liub (2018) Highly Efficient α-Mn2O3@α-MnO2-500 nanocomposite for Peroxymonosulfate Activation: Comprehensive Investigation of Manganese Oxides, J. Mater. Chem., A.6, 1590-1600. https://doi.org/10.1039/ C7TA07942G
P.J.S.Jennifer, S.Muthupandi, M.J.R.Ruban (2022) Interlacing Rod and Sphere Morphology of MnO2 in RGO/NiO/MnO2 Ternary Nanocomposites for Supercapacitive Applications,J. Electrochem. Soc., 169 ,12350.DOI 10.1149/1945- 7111/aca8d0 J Solid State Electrochem., 24 30, 5222–5232.
K. M. Racik, K.Guruprasad, M. Mahendiran (2019) Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability, Int.J.Energy Research, 46(12), 17163-17179. https://doi.org/10.1007/s10854-019-00821-3
S.G.Hwang, J.E.Hong, G.O.Ki, H.M.Jeong (2012) Graphene Anchored with NiO-MnO2 Nanocom-posites for Use as an Electrode Material in Supercapacitors, ECS Solid State Letters., 2(1): M8-M11.DOI:10.1149/2.010301ssl
E.Liu, W.Li, J.Li (2009) Preparation and characterization of nanostructured NiO/MnO2 composite electrode for electrochemical super capacitors, Materials Research Bulletin., 44,5, 6:1122-1126. https://doi.org/10.1016/ j.materresbull. 2008.10.003
Y.F.Yuan, J.X.Lin, D.Zhang (2017) Freestanding hierarchical NiO/MnO2 core/shell nanocomposite arrays for high-performance electrochemical energy storage, Electrochimica Acta., 227, 303-309. https://doi.org/10.1016/ j.electacta. 2017.01.002
J.Chen, Y.Huang, C.Li (2016) Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application, Applied Surface Science 360, 534- 53.DOI:10.1016/j.apsusc.2015.10.187
T.F.Yi, J.Mei, B.Guan (2020) Construction of spherical NiO@MnO2 with core- shell structure obtained by depositing MnO2 nanoparticles on NiO nanosheets for high-performance supercapacitor, Ceramics International., 46(1), 421-429 . https://doi.org/10.1016/j.ceramint.2019.08.278
S.Ramesh, K.Karuppasamy, S.Msolli (2017) A nanocrystalline structured NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitors, New Journal of Chemistry., 24, 373-382. .https://doi.org/10.1039/C7NJ03730A
S.Sivakumar, N. A.Mala (2021) Influence of Variant Temperatures in Optical, Magnetic Properties of NiO Nanoparticles and its Supercapacitor Applications via Precipitation Method, Asian Journal of Chemistry., 33(8), 1783-1790. http://dx.doi.org/10.14233/ajchem.2021.23242
I.Sengupta, S.Chakraborty, M.Talukdar (2018) Thermal reduction of graphene oxide: How temperature influences purity. Journal of Materials Research., 33:4113– 4122. https://doi.org/10.1557/ jmr.2018.338.
A.Al Nafiey, A.Kumar, M.Kumar (2017) Nickel oxide nanoparticles grafted on reduced graphene oxide (rGO/NiO) as efficient photocatalyst for reduction of nitroaromatics under visible light irradiation, Journal of Photochemistry and Photobiology A: Chemistry., 336, 198- 207. https://doi.org/10.1016/ j.jphotochem. 2016.12.023
K. Mohamed Racik, K.Guruprasad, M. Mahendiran (2019) Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability, Journal of Materials Science: Materials in Electronics., 30, 5222–5232. https://doi.org/10.1007/s10854-019 -00821 - 3
F.Zheng,W.L. Xu, D.Jin (2015) Charge transfer from poly(3-hexylthiophene) to graphene oxide and reduced graphene oxide, RSC Advances., 5(109), 89515- 89520.doi: 10.1039/C5RA18540H.
P.Vijaya Kumar, A.Jafar Ahamed, M. Karthikeyan (2019) Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models, SN Appl. Sci., 1, 1083 . https://doi.org/10.1007/s42452- 019-1113-0 https://doi.org/10.1007/s42452-019-1113-0
Y.Deng, W.Tang, W.Li, Y.Chen (2018) MnO2-nanowire@NiO-nanosheet core- shell hybrid nanostructure derived interfacial Effect for promoting catalytic oxidation activity, Catalysis Today., 308, 58-63. https://doi.org/ 10.1016/j.cattod. 2017.07.007
W.Gul, R.A.Shah (2023) Synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) and their application as nano-fillers to improve the physical and mechanical properties of medium density fiberboard, Front.Mater., Sec.Polymeric and Composite Materials., 10, 784-793. https://doi.org/10.3389/fmats.2023.1206918
V.Manikandan, R.Elancheran, P.Revathi et al. (2021) Synthesis, Characterization, Photocatalytic and Electrochemical Studies of Reduced Graphene Oxide Doped Nickel Oxide Nanocomposites, Asian Journal of Chemistry.,33(2), 411- 422. DOI: 10.14233/ajchem.2021.22979
H.Fei, N. Saha, N.Kazantseva et al. (2017) A Highly Flexible Supercapacitor Based on MnO2/RGO Nanosheets and Bacterial Cellulose-Filled Gel Electrolyte. Materials., 10, 1251. doi:10.3390/ ma10111251
S.S.Mehta, D.Y.Nadargi, M. S.Tamboli et al. (2021) RGO/WO3 hierarchical architectures for improved H2S sensing and highly efficient solar-driving photo-degradation of RhB dye, Scientifc Reports., 11, 5023. https://doi.org/10.1038/s41598-021-84416-1.
N.Tiwari, S.Kulkarni (2022) Impact of Current Collector Base on Supercapacitive Performance of Hydrothermally Reduced Graphene Oxide Electrode, ES Energy Environ., 15, 67-75. https://dx.doi.org/10.30919/esee8c614
L.Ma, X.Y.Pei, D.C. Mo, et al. (2019) Facile fabrication of NiO flakes and reduced graphene oxide (NiO/RGO) composite as anode material for lithium-ion batteries, Journal of Materials Science: Materials in Electronics., 30, 5874–5880 https://doi.org/10.1007/s10854-019-00885-1
B.Belay Etana (2019) Functionalization of textile cotton fabric with reduced graphene oxide/MnO2/polyaniline based electrode for supercapacitor To cite this article before publication, Mater. Res., 6, 125708. https://doi.org/ 10. 1088/2053- 1591/ab669
G. Vinodhkumara, R. Ramyab, M. Vimalanc (2018) Reduced graphene oxide based on simultaneous detection of neurotransmitters, Progress in Chemical and Biochemical Research., 1 (1), 40-49. DOI: 10.29088/SAMI/PCBR.2018.1.4049
X. Pu,D. Zhao, C.Fu, Z. Chen, S.Cao, C. Wang et al. (2021) Understanding and Calibration of Charge Storage Mechanism in Cyclic Voltammetry Curves, Chem. Int. Ed., 10.1002/anie.202104167. https://doi.org/10.1002/anie.202104167
E.S. Agudosi, E. C.Abdullah, A. Numan et al. (2020) Fabrication of 3D binder- free graphene NiO electrode for highly stable supercapattery, Sci Rep 10., 11214 . https://doi.org/10.1038/s41598-020-68067-2
L.G.Beka, X.Bu, X.Li et al. (2019) A 2D metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application, RSC Adv., 9, 36123- 36135.DOI: 10.1039/C9RA07061C
S. Ge, Y.Zonglin, X. Lijing, B. Zhihong (2020) In-situ conversion of Ni2P/rGO from heterogeneous self-assembled NiO/rGO precursor with boosted pseudocapacitive performance, Chinese Chemical Letters., 31(6), 1392- 1397. doi: 10.1016/j.cclet.2020.03.046
S. Abbas, S. Manzoor, M.Abdullah (2022) One-pot synthesis of reduced graphene oxide-based PANI/MnO2 ternary nanostructure for high-efficiency supercapacitor applications ,Journal of Materials Science: Materials in Electronics ., 33, 25355–25370 (2022). https://doi.org/10.1007/s10854-022-09242-1
N.H. N. Azman. Y.Sulaiman, M.D. S.Mamat (2019) Novel poly(3,4- ethylenedioxythiophene)/reduced graphene oxide incorporated with manganese oxide/iron oxide for supercapacitor device, Journal of Materials Science: Materials in Electronics., 30 , 1458–1467 .https://doi.org/10.1007/s10854-018-0415-0, 2018
Y.Ming, W.C.H. Zhang (2022) Reduced Graphene Oxide Derived from Low-Grade Coal for High-Performance Flexible Supercapacitors with Ultrahigh Cyclability, Nanomaterials. 12(17), 2989. https://doi.org/10.3390/nano12172989
L.Lu , S. Xu , J. An , S. Yan (2016) Electrochemical performance of CNTs/RGO/MnO2 composite material for supercapacitor, Nanomaterials and Nanotechnology, 6, 1–7. https://doi.org/10.1177/ 1847980416663687
J.Huang,F. Li,B. Liu , P. Zhang (2020) Ni2P/rGO/NF Nanosheets As a Bifunctional High-Performance Electrocatalyst for Water Splitting, Materials .,13(3), 744. https://doi.org/10.3390/ma13030744
Y.S.Chen, C.C.Hu (2003) Capacitive Characteristics of Binary Manganese- Nickel Oxides Prepared by Anodic Deposition ,Electrochem Solid-State Lett.,6, A210–A213. https://doi.org/ 10.1149/1.1601373.
H. Pang, J. Deng, S. Wang, S. Li, J. Du, J. Chen, J. Zhang (2012) Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties, RSC Adv., 2, 5930–5934. https://doi.org/10.1039/C2RA20245J
J. Zhou, X. Shen, M. Jing (2006) Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors, J. Mater. Sci. Technol., 22, 803–806. DOI 10.1149/1.1541675
H.Kim, B.N.Popov (2003) Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors, J. Electrochem., Soc., 150, D56–D62. https://doi.org/10.1021/cm0630800
C. H. Wu, J. S. Ma, C. H. Lu (2012) Synthesis and characterization of nickel– manganese oxide via the hydrothermal route for electrochemical capacitors,Curr. Appl. Phys., 12, 1190–1194. https://doi.org/10.1016/j.cap.2012.02.056
H.Jiang, C.Li, T.Sun, J.Ma (2012) Chem High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core–shell nanostructures,Commun., 48, 2606–2608. https://doi.org/10.1039/C2CC18079K
D.L.Fang, B.C.Wu, Y.Yan, A.Q.Mao, C.H.Zheng (2012) Enhanced supercapacitor performance by incorporating nickel in manganese oxide ,J. Solid State Electrochem., 16, 135–142.
E. H. Liu, W. Li, J. Li, X. Y. Meng, R. Ding, S. T. Tan (2009) Progress in Research on Manganese Dioxide Electrode Materials for Electrochemical Capacitors,Mater. Res. Bull., 44, 1122–1126.
C. Zhu, S. Guo, Y. Fang, L. Han, E. Wang, S. Dong (2011) One-step electrochemical approach to the synthesis of Graphene/MnO2 nanowall hybrids,Nano Res., 4, 648–657. https://doi.org/10. 1016/ S1872-2040(11)60534-3
Z.Lei, F. Shi, L.Lu (2012) Incorporation of MnO2-Coated Carbon Nanotubes between Graphene Sheets as Supercapacitor Electrode, ACS Appl. Mater. Interfaces., 4, 1058–1064. https://doi.org/10.1021/am2016848
J. Zhu, J. He (2012) Facile Synthesis of Graphene-Wrapped Honeycomb MnO2 Nanospheres and Their Application in Supercapacitors. Mater. Interfaces, ACS Appl., 4, 1770–1776. https://doi.org/10.1021/am3000165
Y.Jiang, D.Chen, J. Song, Z. Jiao, Q. Ma, H. Zhang, L. Cheng, B. Zhao, Y. Chu (2013) Synthesis of Shape-Controlled NiO/Graphene Nanocomposites with Enhanced Supercapacitive Properties ,Electrochim. Acta., 91, 173–178.
G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, Z. Bao (2011) Solution-Processed Graphene/MnO2 Nanostructu-red Textiles for High-Performance Electrochemical Capacitors, Nano Lett., 11, 2905 – 2911. https://doi.org/10.1021/nl2013828