Morphological, size-dependent field emission investigation of GO and rGO nanosheet
DOI:
https://doi.org/10.62638/ZasMat1069Abstract
Here, we report the role of surface morphologies and grain size on the electron field emission characteristics of GO and rGO nanosheets, synthesized through a modified Hummer's method. Plasmon peaks were observed at 290 nm to 310 nm for both samples. A plasmonic energy-associated effective mass model was used to calculate the crystal size of the nanosheets, which was found to be 3.56 nm and 4.79 nm for GO and rGO, respectively, confirming confinement behavior. Raman spectroscopy data recorded for GO and rGO nanosheets confirmed the presence of D and G bands, indicating the successful growth of both GO and rGO. Additionally, the crystal size calculated from the Raman data is comparable to the Bohr exciton radius, suggesting that GO and rGO exhibit quantum dot-like behavior. The electron field emission parameters of the synthesized GO and rGO nanosheets were investigated, and the parameters were calculated using the Fowler–Nordheim (F-N) equation. Among the samples, the GO nanosheets exhibited the best electron field emission properties, with a minimum turn-on voltage of 8.2 V/μm and a field enhancement factor of 1200, attributed to the smallest emitter tip radius and the varying surface morphologies.
References
T. M. Magne, T. de Oliveira Vieira, L. M. R. Alencar, F. F. M. Junior, S. Gemini-Piperni, Carneiro, S. V. & R. Santos-Oliveira (2022) Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. Journal of nanostructure in chemistry, 12, 693-727. https://doi.org/10.1007/s40097-021-00444-3
R. S. Krishna, J. Mishra, B. Nanda, S. K. Patro, A. Adetayo, T. S. Qureshi (2021) The role of graphene and its derivatives in modifying different phases of geopolymer composites: A review. Construction and Building Materials, 306, 124774. https://doi.org/10.1016/j.conbuildmat.2021.124774
V. B. Mbayachi, E. Ndayiragije, T. Sammani, S. Taj, E. R. Mbuta (2021) Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/10.1016/j.rechem.2021.100163
J. Liu, S. Chen, Y. Liu, B. Zhao (2022) Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society, 26(6), 101560. https://doi.org/10.1016/j.jscs.2022.101560
T. R. Mignoli, T. L. Hewer, R. A. Antunes, R. M. Alves, M. Schmal (2021) Synthesis of few-layered graphene sheets as support of cobalt nanoparticles and its influence on CO hydrogenation. Materials Science and Engineering: B, 273, 115388. https://doi.org/10.1016/j.mseb.2021.115388
Y. Cao (2024) Rhombohedral graphene goes correlated at four or five layers. Nature Nanotechnology, 19(2), 139-140. https://doi.org/10.1038/s41565-023-01566-1
N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia engineering, 184, 469-477. https://doi.org/10.1016/j.proeng.2017.04.118
S. Santandrea, F. Giubileo, V. Grossi, S. Santucci, M. Passacantando, T. Schroeder, ... A. Di Bartolomeo (2011) Field emission from single and few-layer graphene flakes. Applied Physics Letters, 98(16). https://doi.org/10.1063/1.3579533
V. Kashyap, C. Kumar, N. Chaudhary, K. Saxena (2022) The role of quantum crystal radius on electron field emission properties of fractal silicon nanowire arrays. Materials Letters, 314, 131842. https://doi.org/10.1016/j.matlet.2022.131842
I. Lahiri, V. P. Verma, W. Choi (2011) An all-graphene based transparent and flexible field emission device. Carbon, 49(5), 1614-1619. https://doi.org/10.1016/j.carbon.2010.12.044
C. Kumar, V. Kashyap, A. Kumar, A. K. Sharma, D. Gupta, D. P. Singh, K. Saxena (2023) Reframe of Fowler-Northeim Approach for Electron Field Emission of a Vertical Silicon Nanowires. Silicon, 15(15), 6591-6602. https://doi.org/10.1007/s12633-023-02505-4
V. Kashyap, C. Kumar, N. Chaudhary, K. Saxena (2023) Quantification of deviation of size dependent field enhancement factor of silicon nanowires array through theoretical modeling. Silicon, 15(3), 1203-1210. https://doi.org/10.1007/s12633-022-02068-w
S. Nirantar, T. Ahmed, M. Bhaskaran, J. W. Han, S. Walia, S. Sriram (2019) Electron emission devices for energy‐efficient systems. Advanced Intelligent Systems, 1(4), 1900039. https://doi.org/10.1002/aisy.201900039
Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, ... D. P. Yu (2003) Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters, 83(1), 144-146. https://doi.org/10.1063/1.1589166
L. Chen, H. Yu, J. Zhong, J. Wu, W. Su (2018) Graphene based hybrid/composite for electron field emission: a review. Journal of Alloys and Compounds, 749, 60-84. https://doi.org/10.1016/j.jallcom.2018.03.100
S. N. Alam, N. Sharma, L. Kumar (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene, 6(1), 1-18. http://dx.doi.org/10.4236/graphene.2017.61001
T. K. Kuanyshbekov, K. Akatan, S. K. Kabdrakhmanova, R. Nemkaeva, M. Aitzhanov, A. Imasheva, E. Kairatuly (2021) SYNTHESIS OF GRAPHENE OXIDE FROM GRAPHITE BY THE HUMMERS METHOD. Oxidation Communications, 44(2).
N. Sharma, V. Sharma, Y. Jain, M. Kumari, R. Gupta, S. K. Sharma, K. Sachdev (2017) Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. In Macromolecular symposia. 376(1), 1700006. https://doi.org/10.1002/masy.201700006
N. Aslan, B. Aksakal (2021) Effect of graphene reinforcement on hybrid bioceramic coating deposited on the produced porous Ti64 alloys. Journal of Porous Materials, 28(4), 1301-1313. https://doi.org/10.1007/s10934-021-01081-5
C. Kumar, M. Shrivastav, J. Escrig, L. P. Campos, A. I. Martinez, H. Silva, A. Zarate (2024) The investigation of thickness-dependent mono-fractal, optical and optoelectronics properties of sputtered silver thin film for silicon solar cell. Vacuum, 225, 113247. https://doi.org/10.1016/j.vacuum.2024.113247
V. Kashyap, H. Pawar, I. Sihmar, C. Kumar, A. Kumar, S. Kumar, .... K. Saxena (2024) X-ray analysis of Ag nanoparticles on Si wafer and influence of Ag nanoparticles on Si nanowire-based gas sensor. Applied Physics A, 130(4), 238. https://doi.org/10.1007/s00339-024-07379-w
V. Kashyap, C. Kumar, N. Chaudhary, N. Goyal, K. Saxena (2021) The correlation of resistivity with the crystal size present in silicon nanowires through confinement-based models. Materials Letters, 301, 130312. https://doi.org/10.1016/j.matlet.2021.130312
P. Patra, R. Kumar, C. Kumar, P. K. Mahato (2022) Ni-incorporated cadmium sulphide quantum dots for solar cell: an evolution to microstructural and linear-nonlinear optical properties. Journal of Crystal Growth, 583, 126542. https://doi.org/10.1016/j.jcrysgro.2022.126542
S. Pathak, S. Chaudhary, M. Shrivastav, N. Kumar, S. Varshney, M. Kumar, ... C. Kumar (2024) The effects of air-annealing on the performance of optical-electrical assessment of sputtered CdS film towards the Ag/n-CdS/p-Si (100)/Al photodetectors. Optical Materials, 150, 115117. https://doi.org/10.1016/j.optmat.2024.115117
C. Kumar, V. Kashyap, M. Shrivastav, F. Guzman, D. P. Singh, K. Saxena (2023) In-depth opto-electrical analysis of Ni: CdS film towards the performance as Ag/Ni:CdS/FTO Schottky diode. Optical Materials, 143, 114226. https://doi.org/10.1016/j.optmat.2023.114226
P. Patra, R. Kumar, C. Kumar, K. Pandey, P. K. Mahato (2023) Exploration of impact of thermal condition on microstructural-optical-electrical properties of Ni doped CdS thin films. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.07.018
P. K. Mahato, S. Choudhuri, C. Kumar, S. Roy, P. Patra (2023) Evaluation of crystal size present in graphene oxide quantum dots using optical and Raman spectroscopy. Materials Today: Proceedings, 80, 668-673.
V. Kashyap, C. Kumar, V. Kumar, N. Chaudhary, K. Saxena (2022) Induced quantum-Fano effect by Raman scattering and its correlation with field emission properties of silicon nanowires. Applied Physics A, 128(4), 312.
https://doi.org/10.1007/s00339-022-05415-1
C. Kumar, V. Kashyap, J. M. Shrivastav, V. Kumar, F. Guzman, K. Saxena (2024) The dopant (n-and p-type)-, band gap-, size-and stress-dependent field electron emission of silicon nanowires. Physical Chemistry Chemical Physics, 26(25), 17609-17621. https://doi.org/10.1039/D4CP00825A