Advancements in thermal barrier coatings for internal combustion (IC) engines
DOI:
https://doi.org/10.62638/ZasMat1066Keywords:
Thermal Barrier Coatings (TBCs), Internal Combustion (IC), Air Plasma Sprays (APS), Vacuum Plasma Spray (VPS), Physical Vapor Deposition, High-Velocity Oxy-Fuel , Suspension Plasma Spray , Sol-GelAbstract
Pistons of diesel engines are made of aluminum alloys. There has always been a need to increase the thermal efficiency of engines that use these pistons. Aluminum Alloy pistons find their application because they are lightweight and have a comparatively good heat transfer ability and strength-to-weight ratio. However, aluminum alloys exhibit an increased coefficient of thermal expansion, low durability at high temperatures, increased wear rates, and formation of aluminum oxide due to interaction with oxygen in air at high temperatures. These challenges are solved by coating a ceramic material onto the piston, known as the thermal barrier coating (TBC), due to its low specific heat and heat transfer properties. TBCs play an important role in improving the effectiveness of elevated temperatures in industrial applications like gas turbines, automobiles, and aeronautical systems. TBCs tend to quickly reduce the upper surface temperature of the piston crown. This paper highlights the prominent methods of producing thermal barrier coatings including Diffusion coating, thermal spray technique, Electric Arc Wire Spray Technique, PVD, CVD, Electrodeposition, and Additive Manufacturing Method. The crucial discussion is on the materials and emerging trends in developing an efficient thermal protection system. Additionally, the review throws light on employing novel materials like advanced ceramics, alloys, and nanocomposites for their impact as TBCs. The paper also focuses on prospects and current challenges in the research and development of TBCs. Factors such as thermal conductivity, environmental stability and manufacturing processes are evaluated to meet the demands of high-temperature internal combustion (IC) engine application. Finally, this brief review combines the existing information on TBCs for engineers, practitioners and scientists to understand the present practices and contribute to the improvement in thermal protection technologies in IC engines.
References
É. Lima, K. Costa, A. Medeiros, J. Medeiros (2006) Life Cycle Analysis of an Internal Combustion Engine Through Thermal History of the Cylinder Head and Scanning Electron Microscopy. SAE Technical Paper 2006-01-2802
https://doi.org/10.4271/2006-01-2802.
N. P. Padture (2022) Thermal barrier coatings for gas-turbine engine applications. Science, 296, 280–284, https://doi.org/10.1126/science.1068609.
REUTERS. Electric dream: Britain to ban new petrol and hybrid cars from 2035. Available on: https://uk.reuters.com/article/us-climate-change-accord-idUKKBN1ZX2RY. (accessed 15 Nov 2023).
International Energy Agency (IEA). Global EV outlook 2019 - Scaling-up the transition to electric mobility. May 2019.
International Energy Agency (IEA). The Future of trucks – Implications for energy and the environment. 2017.
A. Hegab, A. La Rocca, P. Shayler (2017) Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas. Renewable Sustainable Energy Revs, 70, 666–697, https://doi.org/10.1016/j.rser.2016.11.249.
J. B. Heywood (2018) Internal combustion engine fundamentals. McGraw-Hill, New York, USA, 2nd Edition, ISBN: 9781260116106.
G. Borman, K. Nishiwaki (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci, 13 (1), 1–46. https://doi.org/10.1016/0360-1285(87)90005-0.
R. Kamo (1987) The adiabatic engine for advanced automotive applications, in: R. L. Evans (Ed.). Automotive Engine Alternatives, Plenum Press, New York, USA, 143–165, https://doi.org/10.1007/978-1-4757-9348-2_6.
G. Woschni, W. Spindler, K. Kolesa (1987) Heat Insulation of Combustion Chamber Walls– A Measure to Decrease the Fuel Consumption of I.C, Engines?. SAE Tech Pap, 8703397, https://doi.org/10.4271/870339.
S. Dhomne, A. M. Mahalle (2019) Thermal barrier coating materials for SI engine. Mater Res Technol, 8 (1), 1532–1537, https://doi.org/10.1016/j.jmrt.2018.08.002.
M. Andrie, S. Kokjohn, S. Paliwal, L. S. Kamo, A. Kamo, D. Procknow (2019) Low heat capacitance thermal barrier coatings for internal combustion engines. SAE Tech Pap, 2019–01-0228, https://doi.org/10.4271/2019-01-0228.
A. Kikusato, K. Terahata, K. Jin, Y. Daisho (2014) A numerical simulation study on improving the thermal efficiency of a spark ignited engine –- Part 2: predi¬cting instantaneous combustion chamber wall tem¬peratures, heat losses and knock. SAE Tech Pap, 2014–01-1066, https://doi.org/10.4271/2014-01-1066
S. Caputo, F. Millo, G. Cifali, F. C. Pesce (2017) Numerical investigation on the effects of different thermal insulation strategies for a passenger car diesel engine. SAE Tech Pap, 2017–24-0021, https://doi.org/10.4271/2017-24-0021.
H. Kosaka, Y. Wakisaka, Y. Nomura, Y. Hotta, M. Koike K. Nakakita (2013) Concept of “temperature swing heat insulation” in combustion chamber walls, and appropriate thermo-physical properties for heat insulation coat. SAE Tech Pap, 2013–01-0274, https://doi.org/10.4271/2013-01-0274.
K. Fukui, Y. Wakisaka, K. Nishikawa, Y. Hattori, H. Kosaka, A. Kawaguchi (2016) Development of instantaneous temperature measurement technique for combustion chamber surface and verification of temperature swing concept. SAE Tech Pap 2016–01-0675, https://doi.org/10.4271/2016-01-0675.
J. Somhorst, M. Oevermann, M. Bovo, I. Denbratt (2019) Evaluation of thermal barrier coatings and surface roughness in a single-cylinder light-duty diesel engine. Int J Engine Res, 22 (3), 1–21, https://doi.org/10.1177/1468087419875837.
A. Kawaguchi, Y. Wakisaka, N. Nishikawa (2019) Thermo-swing insulation to reduce heat loss from the combustion chamber wall of a diesel engine. Int J Engine Res, 20 (7), 805–816,
https://doi.org/10.1177/1468087419852013.
S. Memme, J. S. Wallace (2012) The influence of thermal barrier coating surface roughness on spark-ignition engine performance and emissions. Proceedings of the ASME 2012 internal combustion engine division fall technical conference, Vancouver, BC, Canada, 23–26 September 2012, 893–905. New York: ASME. https://doi.org/10.1115/ICEF2012-92002.
H. Osada, H. Watanabe, Y. Onozawa, K. Enya, N. Uchida (2017). Experimental analysis of heat-loss with different piston wall surface conditions in a heavy-duty diesel engine. Proceedings of the Comodia 9th international conference, Okayama, Japan, 25–28 July 2017. Tokyo, Japan: JSME.
G. B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade (2017) Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications. Magnesium Alloys, 5 (1), 74–132, https://doi.org/10.1016/j.jma.2017.02.004.
F. C. Walsh, C. T. J. Low, R. J. K. Wood, K. T. Stevens, J. Archer, A. R. Poeton, et al., (2013) Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Trans IMF, 87(3), 122–135, https://doi.org/10.1179/174591908X372482.
M. Kunal, N. Luis, M. Downey Calvin, J. Van Rooyen Isabella (2021) Thermal barrier coatings overview: Design, manufacturing, and applications in high-temperature industries. Industrial and Engineering Chemistry Research, 60 (17), 6061-6077. https://doi.org/10.1021/acs.iecr.1c00788.
E. J. Young, E. Mateeva, J. J. Moore, B. Mishra, M. Loch (2000) Low Pressure Plasma Spray Coatings. Thin Solid Films, 377−378, 788−792. https://doi.org/10.1016/S0040-6090(00)01452-8.
A. K. Saini, D. Das, M. K. Pathak (2012) Thermal Barrier Coatings - Applications, Stability and Longevity Aspects. Procedia Eng. 38, 3173−3179. https://doi.org/10.1016/j.proeng.2012.06.368.
X. Song, M. Xie. F. Zhou, G. Jia, X. Hao, S. An (2011) High- Temperature Thermal Properties of Yttria Fully Stabilized Zirconia Ceramics. Rare Earths, 29 (2), 155−159.
https://doi.org/10.1016/S1002-0721(10)60422-X.
X. Ren, W. Pan (2014), Mechanical Properties of High-Temperature- Degraded Yttria-Stabilized Zirconia. Acta Mater, 69, 397−406. https://doi.org/10.1016/j.actamat.2014.01.017.
M. F. Smith, A. C. Hall, J. D. Fleetwood, P. Meyer (2011) Very Low Pressure Plasma Spray- A Review of an Emerging Technology in the Thermal Spray Community. Coatings, 1 (2), 117−132. https://doi.org/10.3390/coatings1020117.
R. Hashaikeh, J. A. Szpunar (2009) Electrolytic Processing of MgO Coatings. Phys. Conf. Ser., 165, 012008. https://doi.org/10.1088/1742-6596/165/1/012008.
I. Zhitomirsky (2002) Cathodic Electrodeposition of Ceramic and Organoceramic Materials Fundamental Aspects. Adv. Colloid Interface Sci., 97 (1−3), 279− 317,https://doi.org/10.1016/S0001-8686(01)00068-9
A. R. Boccaccini, I. Zhitomirsky (2002) Application of Electrophoretic and Electrolytic Deposition Techniques in Ceramics Processing Curr. Opin. Solid State Mater. Sci., 6 (3), 251−260. https://doi.org/10.1016/S1359-0286(02)00080-3.
J. Zhang, X. Guo, Y. G. Jung, L. Li, J. Knapp (2017) Lanthanum Zirconate Based Thermal Barrier Coa-tings: A Review. Surf. Coat. Technol., 323, 18−29. https://doi.org/10.1016/j.surfcoat.2016.10.019.
O. Sudre, J. Cheung, D. Marshall, P. Morgan, C. G. Levi (2001) Thermal Insulation Coatings of LaPO4. Ceramic Engineering and Science Proceedings; Singh, M., Jessen, T., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 22, 367−374. https://doi.org/10.1002/9780470294703.ch44.
X. Xie, H. Guo, S. Gong, H. Xu (2011) Thermal Cycling Behavior and Failure Mechanism of LaTi2Al9O19/YSZ Thermal Barrier Coatings Exposed to Gas Flame. Surf. Coat. Technol., 205 (17−18), 4291−4298. https://doi.org/10.1016/j.surfcoat.2011.03.047.
S. Ghosh (2015), Thermal Barrier Ceramic Coatings A Review. Advanced Ceramic Processing; Mohamed, A. M. A., Ed.; InTech, https://doi.org/10.5772/61346.
W. Ma, D. Mack, J. Malzbender, R. Vaßen, D. Stöver (2008) Yb2O3 and Gd2O3 Doped Strontium Zirconate for Thermal Barrier Coatings. Eur. Ceram. Soc. 28 (16), 3071−3081.
https://doi.org/10.1016/j.jeurceramsoc.2008.05.013.
K. Jiang, S. Liu, X. Wang (2018) Low-Thermal-Conductivity and High-Toughness CeO2-Gd2O3 Co-Stabilized Zirconia Ceramic for Potential Thermal Barrier Coating Applications. Eur. Ceram. Soc., 38 (11), 3986−3993.
https://doi.org/10.1016/j.jeurceramsoc.2018.04.065.
N. P. Padture, P. G. Klemens (1997) Low Thermal Conductivity in Garnets. Am. Ceram. Soc., 80 (4), 1018−1020.
https://doi.org/10.1111/j.1151-2916.1997.tb02937.x.
X. Fan, B. Zou, L. Gu, C. Wang, Y. Wang, W. Huang, L. Zhu, X. Cao (2013) Investigation of the Bond Coats for Thermal Barrier Coatings on Mg Alloy. Appl. Surf. Sci., 265, 264−273, https://doi.org/10.1016/j.apsusc.2012.10.192.
G. M. Kim, N. M. Yanar, E. N. Hewitt, F. S. Pettit, G. H. Meier (2002) The Effect of the Type of Thermal Exposure on the Durability of Thermal Barrier Coatings. Scr. Mater., 46 (7), 489−495,
https://doi.org/10.4028/www.scientific.net/KEM.197.145
M. Bai, B. Song, L. Reddy, T. Hussain (2019) Preparation of MCrAlY-Al2O3 Composite Coatings with Enhanced Oxidation Resistance through a Novel Powder Manufacturing Process. Therm. Spray Technol., 28 (3), 433−443.
http://dx.doi.org/10.1007/s11666-019-00830-y.
P. Rahul, Zh. Sulin, K. Hsia Jimmy (2003) Bond coat surface rumpling in thermal barrier coatings. Acta Materialia, 51 (1), 239-249. https://doi.org/10.1016/S1359-6454(02)00456-8.
Z. H Xu, L. M. He, R. D. Mu, S. M. He, G. H Huang, X. Q. Cao (2010) Double-Ceramic-Layer Thermal Barrier Coatings Based on La2(Zr0.7Ce0.3)2O7/La2Ce2O7 Deposited by Electron Beam- Physical Vapor Deposition. Appl. Surf. Sci., 256 (11), 3661−3668.
https://doi.org/10.1016/j.apsusc.2010.01.004.
R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stöver (2000) Zirconates as New Materials for Thermal Barrier Coatings. Am. Ceram. Soc., 83 (8), 2023−2028. https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
X. Guo, Z. Lu, H-Y Park, L. Li, J. Knapp, Y-G Jung, J. Zhang (2019) Thermal Properties of La2Zr2O7 Double-Layer Thermal Barrier Coatings. Adv. Appl. Ceram. 118 (3), 91−97, https://doi.org/10.1080/17436753.2018.1542997.
E. Jordan, M. Gell (2015) Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments. Technical Report: 1182555. https://doi.org/10.2172/1182555.
S. Mahade, N. Curry, S. Bjo¨rklund, N. Markocsan, P. Nyle´n (2015) Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf Coat Technol., 283, 329-336, https://doi.org/10.1016/j.surfcoat.2015.11.009.
S. Mahade, N. Curry, S. Bjo¨rklund, N, Markocsan, P. Nyle´n, R. Vaßen (2017) Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf Coat Technol., 318, 208-216, https://doi.org/10.1016/j.surfcoat.2016.12.062.
K. M. Doleker, H. Ahlatci, A. C. Karaoglanli (2017) Investigation of isothermal oxidation behavior of thermal barrier coatings (TBCs) consisting of YSZ and multilayered YSZ/Gd2Zr2O7 ceramic layers. Oxid Met. 88(1–2) 109-119,
https://doi.org/10.1007/s11085-016-9690-4.
J. Th. Bauer, X. Montero, M. Ch. Galetz (2020) Fast heat treatment methods for al slurry diffusion coatings on alloy 800 prepared in air. Surface and Coatings Technology, 381, 125140,
https://doi.org/10.1016/j.surfcoat.2019.125140.
A. J. Ruys, B. A. Sutton (2021) Metal-ceramic functionally graded materials (FGMs). Metal-Reinforced Ceramics; Ruys, A.J., Ed.; Woodhead Publishing: Cambridge, UK, 327–359, https://doi.org/10.1016/B978-0-08-102869-8.00009-4
E. Bakan, D. E. Mack, G. Mauer, R. Vaßen, J. Lamon, N. P. Padture (2020) High-temperature materials for power generation in gas turbines. Advanced Ceramics for Energy Conversion and Storage; Guillon, O., Ed.; Elsevier: Amsterdam, The Netherlands, 3–62, https://doi.org/10.1016/B978-0-08-102726-4.00001-6
S. Mbam, S. E. Nwonu, O. A. Orelaja, U. S. Nwigwe, X. F. Gou (2019) Thin-film coating; historical evolution, conventional deposition technologies, stress-state micro/nano-level measurement/models and prospects projection: A critical review. Mater. Res. Express, 6, 122001. https:/doi.org/10.1088/2053-1591/ab5647.
S-Y Qiu, C-W Wu, C-G Huang, Y. Ma, H-B Guo (2021) Microstructure Dependence of Effective Thermal Conductivity of EB-PVD TBCs. Materials, 14 (8), 1838. https://doi.org/10.3390/ma14081838.
V. Miguel-Pérez, A. Martínez-Amesti, M. L. Nó, J. Calvo- Angós, M. I. Arriortua (2014) EB-PVD Deposition of Spinel Coatings on Metallic Materials and Silicon Wafers. Int. J. Hydrogen Energy, 39 (28), 15735−15745.
https://doi.org/10.1016/j.ijhydene.2014.07.115.
G. L. Doll, B. A. Mensah, H. Mohseni, T. W. Scharf (2009) Chemical Vapor Deposition and Atomic Layer Deposition of Coatings for Mechanical Applications. Therm. Spray Technol., 19, 510–516. https://doi.org/10.1007/s11666-009-9335-8.
V. B. Mišković-Stanković (2014) Electrophoretic Deposition of Ceramic Coatings on Metal Surfaces. Electrodeposition and Surface Finishing: Fundamentals and Applications; Djokić, S. S., Ed.; Springer New York: New York, 133−216. https://doi.org/10.1007/978-1-4939-0289-7_3.
E. I. Meletis, X. Nie, F. L. Wang, J. C. Jiang (2002) Electrolytic Plasma Processing for Cleaning and Metal-Coating of Steel Surfaces. Surf. Coat. Technol., 150 (2), 246−256. https://doi.org/10.1016/S0257-8972(01)01521-3.
B. E. Carroll, R. A. Otis, J. P. Borgonia, J. Suh, R. P. Dillon, A. A. Shapiro, D. C. Hofmann, Z-K Liu, A. M. Beese (2016) Functionally Graded Material of 304L Stainless Steel and Inconel 625 Fabricated by Directed Energy Deposition: Characterization and Thermodynamic Modeling. Acta Mater., 108, 46−54. https://doi.org/10.1016/j.actamat.2016.02.019.
D. Kukla, M. Kopec, K. Wang, C. Senderowski, Z. L. Kowalewski (2021) Nondestructive Methodology for Identification of Local Discontinuities in Aluminide Layer-Coated MAR 247 during Its Fatigue Performance. Materials, 14, 3824. https://doi.org/10.3390/ma14143824.
J. He (2022) Advanced MCrAlY alloys with doubled TBC lifetime. Surf. Coat. Technol., 448, 128931. https://doi.org/10.1016/j.surfcoat.2022.128931.
T. A. Taylor, P. N. Walsh (2004) Thermal expansion of MCrAlY alloys. Surf. Coat. Technol., 177–178, 24–31.https://doi.org/10.1016/j.surfcoat.2003.05.001.
M. Gupta, N. Markocsan, X. H. Li, L. Östergren (2018) Influence of Bond Coat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings. Therm. Spray Technol., 27, 84–97, https://doi.org/10.1007/s11666-017-0672-0.
N. Curry, Z. Tang, N. Markocsan, P. Nylén (2015) Influence of Bond Coat Surface Roughness on the Structure of Axial Suspension Plasma Spray Thermal Barrier Coatings—Thermal and Lifetime Performance. Surf. Coat. Technol., 268, 15–23. https://doi.org/10.1016/j.surfcoat.2014.08.067.
B. Bernard, A. Quet, L. Bianchi, V. Schick, A. Joulia, A. Malié, B. Rémy (2017) Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties. Therm. Spray Technol., 26, 1025–1037.https://doi.org/10.1007/s11666-017-0584-z.
P. Sokołowski, L. Pawłowski, D. Dietrich, T. Lampke, D. Jech (2016) Advanced Microscopic Study of Suspension Plasma-Sprayed Zirconia Coatings with Different Microstructures. Therm. Spray Technol., 25, 94–104.
https://doi.org/10.1007/s11666-015-0310-7.
D. Seo, K. Ogawa, T. Shoji, S. Murata (2007) Effect of Particle Size Distribution on Isothermal Oxidation Characteristics of Plasma Sprayed CoNi- and CoCrAlY Coatings. Therm. Spray Technol., 16, 954–966, https://doi.org/10.1007/s11666-007-9125-x.
N. P. Padture, M. Gell, E. H. Jorda (2002) Thermal Barrier Coatings for Gas-Turbine Engine Application. Science 296, 280–284, https://doi.org/10.1126/science.1068609.
M. Parchovianský, I. Parchovianská, O. Hanzel, Z. Netriová, A. Pakseresht (2022) Phase Evaluation, Mechanical Properties and Thermal Behavior of Hot-Pressed LC-YSZ Composites for TBC Applications. Materials, 15, 2839.
https://doi.org/10.3390/ma15082839.
A. K. Ray, E. S. Dwarakadasa, D. K. Das, V. R. Ranganath, B. Goswami, J. K. Sahu, J. D. Whittenberger (2007) Fatigue behavior of a thermal barrier coated superalloy at 800℃. Mater. Sci. Eng., A 448, 294–298.
https://doi.org/10.1016/j.msea.2006.10.035.
W. Zhu, Q. Wu, L. Yang, Y. C. Zho (2020) In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceram., Int. 46, 18526–18533, https://doi.org/10.1016/j.ceramint.2020.04.158.
A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, F. S. Pettit (2001) Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci., 46, 505–553, https://doi.org/10.1016/S0079-6425(00)00020-7.
Q. Wei, J. Zhu, W. Chen (2016) Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method. Therm. Spray Technol., 25, 605–612. https://doi.org/10.1007/s11666-016-0378-8
Y. Tan, A. Shyam, W. B. Choi, E. Lara-Curzio, S. Sampath (2010) Anisotropic elastic properties of thermal spray coatings determined via resonant ultrasound spectroscopy. Acta Mater., 58, 5305–5315. https://doi.org/10.1016/j.actamat.2010.06.003.