Synthesis and properties of new metal complexes containing heterocyclic moieties and investigation of the role of the metal in carbon dioxide gas capture
DOI:
https://doi.org/10.62638/ZasMat1045Keywords:
synthesis, metal complexes, carbon dioxide capture, surface area, surface morphologyAbstract
The continuous release of carbon dioxide (CO2) into the atmosphere will inevitably lead to greater environmental damage. The capture and storage of CO2 is one strategy to mitigate the harm associated with its high concentrations in the atmosphere. The design and synthesis of new materials to act as storage media for CO2 is currently an important challenge for researchers. In this regard, the investigation into the synthesis of new organometallic materials and their potential as CO2 storage media is reported. Therefore, the current work aimed to produce new materials using a simple procedure and investigate their properties, including factors affecting their CO2 adsorption. Four metal complexes containing heterocyclic units were synthesized using a simple method, and their structures were confirmed using several techniques. The surface morphology of the materials was inspected by microscopy. The metal complexes exhibited tunable particle sizes with diameters that ranged from 16.77 to 97.62 nm and a Brunauer‒Emmett‒Teller surface area of 1.20–4.01 m2/g. The materials can capture CO2 at 323 K and 40 bars, with the manganese-containing complex showing the highest CO2 storage capacity (13.1 cm3/gm).
References
Yaumi, A.L., Abu Bakar, M.Z., and Hameed, B.H. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy, 2017, vol. 124, pp. 461–480. https://doi.org/10.1016/j.energy.2017.02.053
Mardani, A., Streimikiene, D., Cavallaro, F., Loganathan, N., and Khoshnoudi, M. Carbon dioxide (CO2) emissions and economic growth: a systematic review of two decades of research from 1995 to 2017. Sci. Total Environ., 2019, vol. 649, pp. 31–49. https://doi.org/10.1016/j.scitotenv.2018.08.229
Sun, H., Xin, Q., Ma, Z., and Lan, S. Effects of plant diversity on carbon dioxide emissions and carbon removal in laboratory‐scale constructed wetland. Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 5076–5082. https://doi.org/10.1007/s11356‐018‐3988‐5
Boamah, K.B., Du, J., Bediako, I.A., Boamah, A.J., Abdul‐Rasheed, A.A., and Owusu, S.M. Carbon dioxide emission and eco-nomic growth of China–the role of international trade. Environ. Sci. Pollut. Res., 2017, vol. 24, pp. 13049–13067. https://doi.org/10.1007/s11356‐017‐8955‐z
Sanz-Pérez, E.S., Murdock, C.R., Didas, S.A., and Jones, C.W. Direct capture of CO2 from ambient air. Chem. Rev., 2016, vol. 116, pp. 11840–11876. https://doi.org/10.1021/acs.chemrev.6b00173
Liu, Z., Deng, Z., Davis, S.J., Giron, C., and Ciais, P. Monitoring global carbon emissions in 2021. Nat. Rev. Earth Environ., 2022, vol. 3, pp. 217–219. https://doi.org/10.1038/s43017-022-00285-w
Qazi, A., Hussain, F., Rahim, N.A., Hardaker, G., Alghazzawi, D., Shaban, K., and Haruna, K. Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Access, 2019, vol. 7, 63837. https://doi.org/10.1109/ACCESS.2019.2906402
Ludin, N.A., Mustafa, N.I., Hanafiah, M.M., Ibrahim, M.A., Teridi, M.A.M., Sepeai, S., Zaharim, A., and Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: a review. Renew. Sust. Energ. Rev., 2018, vol. 96, pp. 11–28. https://doi.org/10.1016/j.rser.2018.07.048
Ouyang, Y., Yang, H., Zhang, P., Wang, Y., Kaur, S., Zhu, X., Wang, Z., Sun, Y., Hong, W., Ngeow, Y.F., and Wang, H. Synthesis of 2,4-diaminopyrimidine core-based derivatives and biological evaluation of their anti-tubercular activities. Molecules, 2017, vol. 22, 1592. https://doi.org/10.3390/molecules22101592
Osman, A.I., Hefny, M., Maksoud, M.I.A.A., Elgarahy, A.M. and Rooney, D.W. Recent advances in carbon capture storage and utilisation technologies: a review. Environ. Chem. Lett., 2021, vol. 19, pp. 797–849. https://doi.org/10.1007/s10311-020-01133-3
Wilberforce, T., Olabi, A., Sayed, E.T., Elsaid, K., and Abdelkareem, M.A. Progress in carbon capture technologies. Sci. Total. Environ., 2021, vol. 761, 143203. https://doi.org/10.1016/j.scitotenv.2020.143203
Jankovský, O., Lojka, M., Lauermannová, A.-M., Antončík, F., Pavlíková, M., Pavlík, Z., and Sedmidubský, D. Carbon dioxide uptake by MOC-based materials. Appl. Sci., 2020, vol. 10, 2254. https://doi.org/10.3390/app10072254
Goh, K., Karahan, H.E., Yang, E., and Bae, T.-H. Graphene-based membranes for CO2/CH4 separation: key challenges and perspectives. Appl. Sci., 2019, vol. 9, 2784. https://doi.org/10.3390/app9142784
Omodolor, I.S., Otor, H.O., Andonegui, J.A., Allen, B.J., and Alba-Rubio, A.C. Dual-function materials for CO2 capture and conversion: a review. Ind. Eng. Chem. Res., 2020, vol. 59, pp. 17612–17631. https://doi.org/10.1021/acs.iecr.0c02218
Muslemani, H., Liang, X., Kaesehage, K., and Wilson, J. . Business models for carbon capture, utilization and storage technologies in the steel sector: a qualitative multi-method study. Processes, 2020, vol. 8, 576. https://doi.org/10.3390/pr8050576
Cannone, S.F., Lanzini, A., and Santarelli, M. A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. Energies, 2021, vol. 14, 387. https://doi.org/10.3390/en14020387
Shukrullah, S., Naz, M.Y., Mohamed, N.M., Ibrahim, K.A., Abdel-Salam, N.M., and Ghaffar, A. CVD synthesis, functionalization and CO2 adsorption attributes of multiwalled carbon nanotubes. Processes, 2019, vol. 7, 634. https://doi.org/10.3390/pr7090634
Li, J., Hou, Y., Wang, P., and Yang, B. A review of carbon capture and storage project investment and operational decision-making based on bibliometrics. Energies, 2019, vol. 12, 23. https://doi.org/10.3390/en12010023
Raza, A., Gholami, R., Rezaee, R., Rasouli, V., and Rabiei, M. Significant aspects of carbon capture and storage—a review. Petroleum, 2019, vol. 5, pp. 335–340. https://doi.org/10.1016/j.petlm.2018.12.007
Schuler, E., Morana, M., Shiju, N.R., and Gruter, G.-J.M. A new way to make oxalic acid from CO2 and alkali formats: using the active carbonite intermediate. Sustain. Chem. Clim. Action, 2022, vol. 1, 100001. https://doi.org/10.1016/j.scca.2022.100001
Builes, S., López-Aranguren, P., Fraile, J., Vega, L.F., and Domingo, C. Analysis of CO2 adsorption in amine-functionalized porous silicas by molecular simulations. Energy Fuels, 2015, vol. 29, pp. 3855–3862. https://doi.org/10.1021/acs.energyfuels.5b00781
D’Alessandro, D.M., Smit, B., and Long, J.R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed., 2010, vol. 49, pp. 6058–6082. https://doi.org/10.1002/anie.201000431
Mukherjee, A., Okolie, J.A., Abdelrasoul, A., Niu, C., and Dalai, A.K. Review of post-combustion carbon dioxide capture technologies using activated carbon. J. Environ. Sci., 2019, vol. 83, pp. 46–63. https://doi.org/10.1016/j.jes.2019.03.014
Okesola, A.A., Oyedeji, A.A., Abdulhamid, A.F., Olowo, J., Ayodele, B.E., and Alabi, T.W. Direct air capture: A review of carbon dioxide capture from the air. IOP Conf. Ser: Mater. Sci. Eng., 2018, vol. 413, 012077. https://doi.org/10.1088/1757-899x/413/1/012077
Asadi-Sangachini, Z., Galangash, M.M., Younesi, H., and Nowrouzi, M. The feasibility of cost-effective manufacturing activated carbon derived from walnut shells for large-scale CO2 capture. Environ. Sci. Pollut. Res., 2019, vol. 26, pp. 26542–26552. https://doi.org/10.1007/s11356-019-05842-3
Gibson, J.A.A., Mangano, E., Shiko, E., Greenaway, A.G., Gromov, A.V., Lozinska, M.M., Friedrich, D., Campbell, E.E.B., Wright, P.A., and Brandani, S. Adsorption materials and processes for carbon capture from gas-fired power plants: AMPGas. Ind. Eng. Chem. Res., 2016, vol. 55, pp. 3840–3851. https://doi.org/10.1021/acs.iecr.5b05015
Lee, S.-Y. and Park, S.-J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem., 2015, vol. 23, pp. 1–11. https://doi.org/10.1016/j.jiec.2014.09.001
Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.-H., and Long, J.R. A review on solid adsorbents for carbon dioxide capture. Chem. Rev., 2012, vol. 112, pp. 724–781. https://doi.org/10.1021/cr2003272
Lu, C., Ben, T., and Qiu, S. Synthesis and gas storage application of hierarchically porous materials. Macromol. Chem. Phys., 2016, vol. 217, pp. 1995–2003. https://doi.org/10.1002/macp.201600221
Japip, S., Wang, H., Xiao, Y., and Chung, T.S. Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J. Membr. Sci., 2014, vol. 467, pp. 162–174. https://doi.org/10.1016/j.memsci.2014.05.025
Huang, Q. and Eić, M. Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process. Sep. Purif. Technol., 2013, vol. 103, pp. 203–215. https://doi.org/10.1016/j.seppur.2012.10.040
Yazaydın, A.Ö., Benin, A.I., Faheem, S.A., Jakubczak, P., Low, J.J., Willis, R.R., and Snurr, R.Q. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater., 2019, vol. 21, pp. 1425–1430. https://doi.org/10.1021/cm900049x
Lee, S.C., Chae, H.J., Lee, S.J., Choi, B.Y., Yi, C.K., Lee, J.B., Ryu, C.K., and Kim, J.C. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environ. Sci. Technol., 2008, vol. 42, pp. 2736–2741. https://doi.org/10.1021/es702693c
Wang, S., Yan, S., Ma, X., and Gong, J. Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy Environ. Sci., 2011, vol. 4, pp. 3805–3819. https://doi.org/10.1039/c1ee01116b
Hauchhum, L. and Mahanta, P. Carbon dioxide adsorption on zeolites and activated carbon by pressure swing adsorption in a fixed bed. Int. J. Energy Environ. Eng., 2014, vol. 5, pp. 349–356. https://doi.org/10.1007/s40095-014-0131-3
Staciwa, P., Narkiewicz, U., Sibera, D., Moszyński, D., Wróbel, R.J., and Cormia, R.D. Carbon spheres as CO2 sorbents. Appl. Sci., 2019, vol. 9, 3349. https://doi.org/10.3390/app9163349
Aquino, A.S., Vieira, M.O., Ferreira, A.S.D., Cabrita, E.J., Einloft, S., and De Souza, M.O. Hybrid ionic liquid–silica xerogels ap-plied in CO2 capture. Appl. Sci., 2019, vol. 9, 2614. https://doi.org/10.3390/app9132614
Chiang, Y.-C., Yeh, C.-Y., and Weng, C.-H. Carbon dioxide adsorption on porous and functionalized activated carbon fibers. Appl. Sci., 2019, vol. 9, 1977. https://doi.org/10.3390/app9101977
Choma, J., Kloske, M., Dziura, A., Stachurska, K., and Jaroniec, M. Preparation and studies of adsorption properties of microporous carbon spheres. Eng. Prot. Environ., 2016, vol. 19, pp. 169–182. https://doi.org/10.17512/ios.2016.2.1
Dawson, R., Cooper, A.I., and Adams, D.J. Nanoporous organic polymer networks. Prog. Polym. Sci., 2012, vol. 37, pp. 530–563. https://doi.org/10.1016/j.progpolymsci.2011.09.002
Choi, S., Drese, J.H., and Jones, C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2009, vol. 2, pp. 796–854. https://doi.org/10.1002/cssc.200900036
Wang, W., Zhou, M., and Yuan, D. Carbon dioxide capture in amorphous porous organic polymers. J. Mater. Chem. A, 2017, vol. 5, pp. 1334–1347. https://doi.org/10.1039/c6ta09234a
Elhenawy, S.E.M., Khraisheh, M., AlMomani, F., and Walker, G. Metal-organic frameworks as a platform for CO2 capture and chemical processes: adsorption, membrane separation, catalytic-conversion, and electrochemical reduction of CO2. Catalysts, 2020, vol. 10, 1293. https://doi.org/10.3390/catal10111293
Kumar, P., Anand, B., Tsang, Y.F., Kim, K.-H., and Khullar, S., and Wang, B. Regeneration, degradation, and toxicity effect of MOFs: opportunities and challenges. Environ. Res., 2019, vol. 176, 108488. https://doi.org/10.1016/j.envres.2019.05.019
Satar, H.A., Ahmed, A.A., Yousif, E., Ahmed, D.S., Alotibi, M.F., and El-Hiti, G.A. Synthesis of novel heteroatom-doped porous-organic polymers as environmentally efficient media for carbon dioxide storage. Appl. Sci., 2019, vol. 9, 4314. https://doi.org/10.3390/app9204314
Mohamed, S.H., Hameed, A.S., Yousif, E., Alotaibi, M.H., Ahmed, D.S., and El-Hiti, G.A. New porous silicon-containing organic polymers: synthesis and carbon dioxide uptake. Processes, 2020, vol. 8, 1488. https://doi.org/10.3390/pr8111488
Ahmed, D.S., El-Hiti, G.A., Yousif, E., Hameed, A.S., and Abdalla, M. New eco-friendly phosphorus organic polymers as gas storage media. Polymers, 2017, vol. 9, 336. https://doi.org/10.3390/polym9080336
Yaseen, A.A., Al‐Tikrity, E.T.B., El-Hiti, G.A., Ahmed, D.S., Baashen, M.A., Al-Mashhadani, M.H. and Yousif, E. A process for carbon dioxide capture using Schiff bases containing a trimethoprim unit. Processes, 2021, vol. 9, 707. https://doi.org/10.3390/pr9040707
Omer, R.M., Al-Tikrity, E.T.B., El-Hiti, G.A., Alotibi, M.F., Ahmed, D.S., and Yousif, E. Porous aromatic melamine Schiff bases as highly efficient media for carbon dioxide storage. Processes, 2020, vol. 8, 17. https://doi.org/10.3390/pr8010017
Mahmood, Z.N., Alias, M., El-Hiti, G.A.-R., Ahmed, D.S. and Yousif, E. Synthesis and use of new porous metal complexes containing a fusidate moiety as gas storage media. Korean J. Chem. Eng., 2021, vol. 38, pp. 179–186. https://doi.org/10.1007/s11814-020-0692-1
Mohammed, A., Yousif, E. and El-Hiti, G.A. Synthesis and use of valsartan metal complexes as media for carbon dioxide storage. Materials, 2020, vol. 13, 1183. https://doi.org/10.3390/ma13051183
Mousa, O.G., Yousif, E., Ahmed, A.A., El‐Hiti, G.A., Alotaibi, M.H. and Ahmed, D.S. Synthesis and use of carvedilol metal complexes as carbon dioxide storage media. Appl. Petrochem. Res., 2020, vol. 10, pp. 157–164. https://doi.org/10.1007/s13203-020-00255-7
Hadi, A.G., Jawad, K., Yousif, E., El-Hiti, G.A., Alotaibi, M.H., and Ahmed, D.S. Synthesis of telmisartan organotin(IV) complexes and their use as carbon dioxide capture media. Molecules, 2019, vol. 24, 1631. https://doi.org/10.3390/molecules24081631
Nakao, M., Toguchi, M., Horikoshi, K., Kitaike, S., and Sano, S. Synthesis of novel 2,3-disubstututed thiophenes via tandem thia-Michael/aldol reactions of allenyl esters. Heterocycles, 2022, vol. 104, pp. 379–388. https://doi.org/10.3987/COM-21-14575
Baldo, B.A. and Phan, N.H. Drug Allergy: Clinical Aspects, Diagnosis, Mechanism, Structure–Activity Relationship; 2nd Ed., Springer Cham, London, UK, pp. 134–162, 2017. https://doi.org/10.1007/978-3-030-51740-3
Abdulghani, A.J. and Hussain, R.Kh. Synthesis and characterization of Schiff base metal complexes derived from cefotaxime with 1H-indole-2,3-dione (isatin) and 4-N,N-dimethylaminobenzaldehyde. Open J. Inorg. Chem., 2015, vol. 5, pp. 83–101. https://doi.org/10.4236/ojic.2015.54010
Hasani, N. and Al-Jibouri, M.N.A. Synthesis, characterization, and DFT study of some transition metal complexes with Schiff base derived from 2-acetylthiophene and L-methionine. Res. Chem. Intermed., 2017, vol. 43, pp. 4585–4610. https://doi.org/10.1007/s11164-017-2898-3
Ayoub, M.A., Abd-Elnasser, E.H., Ahmed, M.A., and Rizk, M.G. Some new metal(II) complexes based on bis-Schiff base ligand derived from 2-acetylethiophine and 2,6-diaminopyridine: syntheses, structural investigation, thermal, fluorescence and catalytic activity studies. J. Mol. Struct., 2018, vol. 1163, pp. 379–387. https://doi.org/10.1016/j.molstruc.2018.03.006
El-Saied, F.A., Shakdofa, M.M.E., El-Tabi, A.S., Abdel-Zaher, M.M., Morsy, N. Coordination versatility of N2O4 polydentate hydrazonic ligand in Zn(II), Cu(II), Ni(II), Co(II), Mn(II), and Pd(II) complexes and antimicrobial evaluation. Beni-Suef Univ. J. Basic Appl. Sci., 2017, vol. 6, pp. 310–320. https://doi.org/10.1016/j.bjbas.2017.09.005
Housecroft, C.A. and Sharpe, A.G., Inorganic Chemistry; 4th Ed., Pearson Education Limited, England, UK, 2012, 1213 pp. ISBN 0273742752, 9780273742753
Echekwube, H.O., Ukoha, P.O., Ujam, O.T., Nwuche, C.O., Asegbeloyin, J.N., and Ibezim, A. Synthesis and in silico investigation of Schiff base derivatives of 1H-indole-2,3-diones and their Co(II) and Ni(II) complexes as antimicrobial agents. Braz. J. Biol. Sci., 2019, vol. 6, pp. 63–85. https://doi.org/10.21472/bjbs.061207
Yu, X., Regenauer-Lieb, K., and Tian, F. Investigation of effects of surface roughness on coal seam gas transport using a fractal-based lattice Boltzmann method. ASEG Extended Abstracts, 2019, vol. 1, pp. 1–2. https://doi.org/10.1080/22020586.2019.12073014
Vergis, B.R., Kottam, N., Krishna, R.H., and Nagabhushana, B.M. Removal of Evans Blue dye from aqueous solution using magnetic spinel ZnFe2O4 nanomaterial: adsorption isotherms and kinetics. Nano-Struct. Nano-Objects, 2019, vol. 18, 100290. https://doi.org/10.1016/j.nanoso.2019.100290
Cychosz, K.A. and Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering, 2018, vol. 4, pp. 559–566. https://doi.org/10.1016/j.eng.2018.06.001
Furukawa, H. and Yaghi, O.M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc., 2009, vol. 131, pp. 8875–8883. https://doi.org/10.1021/ja9015765
Peng, Y., Krungleviciute, V., Eryazici, I., Hupp, J.T., Farha, O.K., and Yildirim, T. Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J. Am. Chem. Soc., 2013, vol. 135, pp. 11887–11894. https://doi.org/10.1021/ja4045289
Razavian, M., Fatemi, S., and Masoudi-Nejad, M. A comparative study of CO2 and CH4 adsorption on silicalite-1 fabricated by sonication and conventional method. Adsorpt. Sci. Technol., 2014, vol. 32, pp. 73–87. https://doi.org/10.1260/0263-6174.32.1.73
Abd, A.A., Naji, S.Z., Hashim, A.S., and Othman, M.R. Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J. Environ. Chem. Eng., 2020, vol. 8, 104142. https://doi.org/10.1016/j.jece.2020.104142