Biofuels as a challenge of sustainable development

Authors

  • Saša Papuga University of Banja Luka, Faculty of Technology, Republic of Srpska, B&H Author
  • Aleksandra Kolundžija University of Banja Luka, Faculty of Technology, Republic of Srpska, B&H Author
  • Milica Đurđević University of Banja Luka, Faculty of Technology, Republic of Srpska, B&H Author

DOI:

https://doi.org/10.5937/zasmat2303291P

Keywords:

biofuels, biomass, bioenergy, sustainability, energy policy

Abstract

Bioenergy, or energy derived from biomass, today is recognized as an important component in many energy scenarios, being an integral part of various global, regional, and national policies and strategies. This has led to intensified research into more efficient biofuel production. This paper explains the advantages, disadvantages, and problems related to the production of biofuels from different types of raw materials. Several examples of commercialized and demonstration plants for the production of biofuels in different parts of the world are listed. It is to be expected that, with greater use of modern biofuel production solutions, the contribution of these sources of (bio)energy will be the main part of future energy consumption from renewable sources.

References

Abdullah, B., Syed, M.S.A.F., Shokravi, Z., Ismail, S., Kassim, K.A., Mahmood, A.N., Aziz, M.M.A. (2019) Fourth generation biofuel: A review on risks and mitigation strategies.Renewable and Sustainable Energy Reviews, 107: 37-50

https://doi.org/10.1016/j.rser.2019.02.018

Alam, F., Mobin, S., Chowdhury, H. (2010) Third generation biofuel from algae.Procedia Engineering, 105, 763-768

https://doi.org/10.1016/j.proeng.2015.05.068

Alkcon Corporation (2021) Biopropane. http://www.alkcon.com/biopropane/, 25.04.2023

Bai, A., Popp, J., Pető, K., Szőke, I., Harangi-Rákos, M., Gabnai, Z. (2017) The significance of forests and algae in CO2 balance: A Hungarian case study.Sustainability, 9(5): 857-857

https://doi.org/10.3390/su9050857

Basu, P. (2010) Biomass gasification and pyrolysis: Practical design and theory. USA: Elsevier

Behera, S., Singh, R., Arora, R., Sharma, N.K., Shukla, M., Kumar, S. (2015) Scope of algae as third generation biofuels.Frontiers in bioengineering and biotechnology, 2, No-90

https://doi.org/10.3389/fbioe.2014.00090

Biofuels International (2021) The conversion of used cooking oils into biodiesel. https://biofuelsnews.com/news/the-conversion-of-used-cookingoils-into-biodiesel/, 25.04.2023

Björnsson, L., Pettersson, M., Börjesson, P., Ottosson, P., Gustavsson, C. (2021) Integrating bio-oil production from wood fuels to an existing heat and power plant: Evaluation of energy and greenhouse gas performance in a Swedish case study.Sustainable Energy Technologies and Assessments, 48: 101648-101648

https://doi.org/10.1016/j.seta.2021.101648

Carriquiry, M.A., Du, X., Timilsina, G.R. (2011) Second generation biofuels: Economics and policies.Energy Policy, 39(7): 4222-4234

https://doi.org/10.1016/j.enpol.2011.04.036

Chum, H., Faaij, A., Moreira, J., Berndes, G., Dhamija, P., Dong, H., Gabrielle, B., Eng, A.G., Lucht, W., Mapako, M., Cerutti, O.M., McIntyre, T., Minowa, T., Pingoud, K., Bain, R., Chiang, R. (2011) Chapter 2: Bioenergy. in: Renewable energy sources and climate change mitigation, Cambridge University Press, 209-332

https://doi.org/10.1017/CBO9781139151153.006

Conscious Travel Guide (2021) Chamber of Commerce Amsterdam. https://conscioustravelguide. com/important-global-sustainability-fairtrade-certifications, 20.04.2023

Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A.J., Spencer, N., Jouhara, H. (2017) Potential of pyrolysis processes in the waste management sector.Thermal Science and Engineering Progress, 3, 171-197

https://doi.org/10.1016/j.tsep.2017.06.003

Demirbas, A., Demirbas, M.F. (2010) Green energy and technology, algae energy: Algae as a new source of biodiesel. London: Springer, 139-157

https://doi.org/10.1007/978-1-84996-050-2_6

Douvartzides, S.L., Charisiou, N.D., Papageridis, K.N., Goula, M.A. (2019) Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines.Energies, 12(5), 809-815

https://doi.org/10.3390/en12050809

Dragone, G., Fernandes, B., Vicente, A.A., Teixeira, J.A. (2010) Third generation biofuels from microalgae. in: Current research, technology and education topics in applied microbiology and microbial biotechnology, Badajoz, Spain: Formatex Research Center, 1355-1366

Dutta, K., Daverey, A., Lin, J. (2014) Evolution retrospective for alternative fuels: First to fourth generation.Renewable Energy, 69: 114-122

https://doi.org/10.1016/j.renene.2014.02.044

EERE (U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy) (2021) Hydrogen Production: Thermochemical Water Splitting. https://www.energy.gov/eere/fuelcells/ hydrogen-production-thermochemical-watersplitting, 25.04.2023

ETIP (European Technology and Innovation Platform) (2021) HVO/HEFA Overview. https://www. etipbioenergy.eu/value-chains/products-enduse/products/hvo-hefa, 25.04.2023

European Commission (2009) Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and.Official Journal of the European Communities L, Text with EEA relevance (http://data.europa.eu/eli/dir/ 2009/30/oj, 25.04.2023, 140, European Commission, Brussels

European Commission (2020) Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the committee of the regions. https://eurlex.europa.eu/resource.html?uri=cellar:c006a13f-0e04-11eb-bc07-01aa75ed71a1.0001.02/DOC_1&format=PDF, 20.04.2023

European Commission (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. https://eur-lex.europa.eu/ eli/dir/2009/28/2015-10-05, 25.04.2023

Gregg, J.S., Bolwig, S., Hansen, T., Solér, O., Amer-Allam, S.B., Viladecans, J.P., Klitkou, A., Fevolden, A. (2017) Value chain structures that define European cellulosic ethanol production.Sustainability, 9(1): 118-118

https://doi.org/10.3390/su9010118

Gvero, P., Papuga, S., Mujanic, I., Vaskovic, S. (2016) Pyrolysis as a key process in biomass combustion and thermochemical conversion.Thermal Science, 20(4), 1209-1222

https://doi.org/10.2298/TSCI151129154G

Gvero, P., Mujanić, I., Papuga, S., Vasković, S., Anatunović, R. (2017) Review of synthetic fuels and new materials production based on pyrolysis technologies. in: Advances in applications of industrial biomaterials, Germany: Springer International Publishing, pp 65-85

https://doi.org/10.1007/978-3-319-62767-0_4

Hobson, C. (2018) Renewable Methanol Report. Methanol Institute, https://www.methanol.org/wpcontent/uploads/2019/01/MethanolReport.pdf, 25.04.2023

IEA, ETSAP (2010) Energy demand technologies data. https://iea-etsap.org/index.php/energy-technologydata/energy-demand-technologies-data, 24.05.2023

International Energy Association (2011) Technology roadmap biofuels for transport. https://www.iea.org/reports/technology-roadmapbiofuels-for-transport, 20.04.2023

International Energy Association (2021) Renewables 2021: Biofuels. https://www.iea.org/ reports/renewables-2021/biofuels?mode=transport& region=World&publication=2021&flow=Consumptio n&product=Ethanol, 25.04.2023

IRENA (2018) Bioenergy from Finnish forests: Sustainable, efficient, modern use of wood. https://www.irena.org/-/media/Files/IRENA/Agency/ Publication/2018/Mar/IRENA_Bioenergy_from_Finni sh_forests_2018.pdf, 25.04.2023

Jacquet, N., Haubruge, E., Richel, A. (2015) Production of biofuels and biomolecules in the framework of circular economy: A regional case study.Waste Management & Research, 33(12), 1121-1126

https://doi.org/10.1177/0734242X15613154

Kaltschmitt, M. (2017) Biomass as Renewable Source of Energy: Possible Conversion Routes. in: Encyclopedia of Sustainability Science and Technology, New York: Springer, p.1-38

https://doi.org/10.1007/978-1-4939-2493-6_244-3

https://doi.org/10.1007/978-1-4939-2493-6_991-1

Karlsson, H. (2014) Biorefinery systems for energy and feed production: Greenhouse gas performance and energy balances. Uppsala: Swedish University of Agricultural Sciences, Licentiate Thesis

Khattar, J.S., Singh, Y., Parveen, S., Singh, D.P. (2016) Microalgal biofuels: Flexible bioenergies for sustainable development. in: Biofuels, Routledge Handbooks Online, pp 331-362

Lugani, Y., Sooch, B.S., Kumar, S. (2019) Biochemical strategies for enhanced biofuel production. in: Prospects of renewable bioprocessing in future energy systems, Springer, p. 51-87

https://doi.org/10.1007/978-3-030-14463-0_2

Luque, R., Speight, J.G. (2015) Gasification and synthetic liquid fuel production: An overview. in: Gasification for synthetic fuel production, USA: Elsevier, pp. 3-28

https://doi.org/10.1016/B978-0-85709-802-3.00001-1

Millán, E., Mota, N., Guil-López, R., Pawelec, B., García, F.J.L., Navarro, R.M. (2020) Direct synthesis of dimethyl ether from syngas on bifunctional hybrid catalysts based on supported H3PW12O40 and Cu-ZnO(Al): Effect of heteropolyacid loading on hybrid structure and catalytic activity.Catalysts, 10(9): 1071-1071

https://doi.org/10.3390/catal10091071

Milledge, J.J., Smith, S., Dyer, P.W., Harvey, P. (2014) Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass.Energies, 7(11), 7194-7222

https://doi.org/10.3390/en7117194

Moscovici, D., Reed, A. (2017) Comparing wine sustainability certifications around the world: History, status, and opportunity.Journal of Wine Research, 29(1): 1-25

https://doi.org/10.1080/09571264.2018.1433138

Niggli, U., Plagge, J., Reese, S., Fertl, T., Schmid, O., Brändli, U., Bärtschi, D., Pöpsel, G., Hermanowski, R., Hohenester, H., Grabmann, G. (2015) Towards modern sustainable agriculture with organic farming as the leading model: A discussion document on Organic 3.0. Bioaktuell. https://www.bioaktuell. ch/fileadmin/documents/ba/Bildung/Organic-Three-Zero-2015-12-07.pdf, 25.04.2023

Nizami, A.-s., Mohanakrishna, G., Mishra, U., Pant, D. (2016) Trends and sustainability criteria for liquid biofuels. in: Biofuels, Routledge Handbooks Online, p. 59-88

https://doi.org/10.1201/9781315370743-5

OECD, FAO (2022) Agricultural Outlook 2022-2031. https://www.oecd.org/publications/oecdfao-agricultural-outlook-19991142.htm, 20.04.2023

Papadokonstantakis, S., Johnsson, F. (2017) Report on definition of parameters for defining biomass conversion technologies. http://www.advancefuel. eu/contents/reports/d31-biomass-conversiontechnologies-definitions-final.pdf, 25.04.2023

Papuga, S. (2022) Malozagađujuće tehnologije i čistija proizvodanja. Banja Luka: Univerzitet u Banjoj Luci, knjiga

Papuga, S., Gvero, P., Vukic, L. (2016) Temperature and time influence on the waste plastics pyrolysis in the fixed bed reactor.Thermal Science, 20(2): 731-741

https://doi.org/10.2298/TSCI141113154P

Papuga, S., Djurdjevic, M., Ciccioli, A., Vecchio, C.S. (2023) Catalytic pyrolysis of plastic waste and molecular symmetry effects: A review.Symmetry, 15(1): 38-38

https://doi.org/10.3390/sym15010038

Papuga, S., Musić, I., Gvero, P., Vukić, L. (2013) Preliminary research of waste biomass and plastic pyrolysis process.Contemporary Materials, 4(1): 76-83

https://doi.org/10.7251/COMEN1301076P

Preradović, M., Papuga, S. (2021) Biogoriva treće generacije - procesi uzgajanja i dobijanja goriva iz mikroalgi (Third generation biofuels: Cultivation methods and technologies for processing of microalgal biofuels).Zaštita materijala, vol. 62, br. 4, str. 249-261

https://doi.org/10.5937/zasmat2104249P

RocketReach (2022) Tri-State Biodiesel Information. https://rocketreach.co/tri-state-biodieselprofile_b5caed60f42e140c, 25.04.2023

Saratale, G.D., Saratale, R.G., Banu, J., Chang, J. (2019) Biohydrogen production from renewable biomass resources. in: Biohydrogen, Elsevier, Second edition, p.247-277

https://doi.org/10.1016/B978-0-444-64203-5.00010-1

Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U.C., Mussgnug, J.H., Posten, C., Kruse, O., Hankamer, B. (2008) Second generation biofuels: High-efficiency microalgae for biodiesel production.BioEnergy Research, 1(1): 20-43

https://doi.org/10.1007/s12155-008-9008-8

Seay, J.R., You, F. (2016) Biomass supply, demand, and markets. in: Biomass supply chains for bioenergy and biorefining, Woodhead Publishing, 85-100

https://doi.org/10.1016/B978-1-78242-366-9.00004-6

SeQuential (2020) The Biodiesel Process: Making Fuel from Waste. https://choosesq.com/blog/thebiodiesel-process-making-fuel-from-waste/, 25.04.2023

Sheldon, D. (2017) Methanol Production: A Technical History.Johnson Matthey Technol. Rev, 61(3), 172-182

https://doi.org/10.1595/205651317X695622

Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., Awasthi, M.K. (2019) Biofuel Production From Biomass. in: Current Developments in Biotechnology and Bioengineering, Elsevier, 79-92

https://doi.org/10.1016/B978-0-444-64083-3.00005-1

Speight, J.G. (2015) Synthetic liquid fuel production from gasification. in: Gasification for synthetic fuel production, USA: Elsevier, p. 147-174

https://doi.org/10.1016/B978-0-85709-802-3.00007-2

Stratas Advisors (2021) Gradual increase of bio-oil production expected as commercialization of fast pyrolysis gains momentum. https://stratasadvisors. com/Insights/2021/11242021-Bio-oil-Production, 20.04.2023

Total Energies (2021) BioTfuel: Developing Second-Generation Biofuels. https://www.totalenergies. com/energy-expertise/projects/bioenergies/biotfuelconverting-plant-wastes-into-fuel , 25.04.2023

Tursi, A. (2019) A review on biomass: Importance, chemistry, classification, and conversion.Biofuel Research Journal, 6(2), 962-979

https://doi.org/10.18331/BRJ2019.6.2.3

Vakili, R., Pourazadi, E., Setoodeh, P., Eslamloueyan, R., Rahimpour, M.R. (2011) Direct dimethyl ether (DME) synthesis through a thermally coupled heat exchanger reactor.Applied Energy, 88(4): 1211-1223

https://doi.org/10.1016/j.apenergy.2010.10.023

Wallace, S. (2010) What about bio-oil?.Canadian Biomass Magazine, https://www.canadianbiomassmagazine.ca/what-about-bio-oil-1779/,20.04.2023

WindEurope (2021) How renewable hydrogen will help Europe's decarbonisation. https://windeurope. org/newsroom/news/how-renewable-hydrogen-willhelp-europes-decarbonisation/,25.04.2023

Woolcock, P.J., Brown, R.C. (2013) A review of cleaning technologies for biomass-derived syngas.Biomass and Bioenergy, 52, 54-84

https://doi.org/10.1016/j.biombioe.2013.02.036

Worldwatch Institute (2007) Biofuels for Transport: Global Potential and Implications for Sustainable Energy and Agriculture. London: Earthscan

Yusoff, M.N.A.M., Zulkifli, N.W.M., Masum, B.M., Masjuki, H.H. (2015) Feasibility of bioethanol and biobutanol as transportation fuel in spark-ignition engine: A review.RSC Advances, 5(121): 100184-100211

https://doi.org/10.1039/C5RA12735A

Zhao, B., Su, Y. (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: A review.Renewable and Sustainable Energy Reviews, 31: 121-132

https://doi.org/10.1016/j.rser.2013.11.054

Zinoviev, S., Arumugam, S., Miertus, S. (2007) Background paperon biofuel production technologies. International Centre for Science and High Technology (ISC)

Downloads

Published

15-09-2023

Issue

Section

Articles