Determination of resistance to cavitation of pyrophyllite samples

Authors

  • Dragan Radulović Institute of Technology of Nuclear and Other Mineral Row Materials - ITNMS, Belgrade, Serbia Author
  • Marko Pavlović Kontrol Inspekt-Beograd, Beograd Author
  • Marina Dojčinović University of Belgrade, Faculty of Technology and Metallurgy, Serbia Author

DOI:

https://doi.org/10.5937/zasmat2102126A

Keywords:

pyrophillite, cavitation resistance, mass loss, damage morphology, image analysis

Abstract

The resistance under the action of cavitation of sintered pyrophillite samples was investigated. The initial sample of pyrophillite from the Parsovic-BiH deposit was ground a vibrating mill to a granulation of 20 mm, pressed and sintered at temperatures (⁰C): 100; 1100; 1200. To assess cavitation resistance, the change in sample mass as a function of cavitation time was monitored. The cavitation erosion test was performed using the ultrasonic vibratory cavitation test method according to the ASTM G-32 standard. Cavitation velocites were calculated for all samples, as a basic indicator of the resistance of the material under the action of cavitation. The change in the morphology of the surface with the test time was followed by scanning electron microscopy. Based on the values of cavitation velocity and analysis of the surface damage morphology, the cavitation resistance of the tested samples based on pyrophillite was determined. The obtained results indicate that the samples of sintered pyrophillite have satisfactory resistance to the action of cavitation and be applied in conditions of lower cavitation loads.

References

(2010) ASTM G32-10: Standard test method for cavitation erosion using vibratory apparatus. West Conshohocken: ASTM International

Andrić, Lj., Terzić, A., Aćimović-Pavlović, Z., Pavlović, Lj., Petrov, M. (2013) Comparative analiysis of process paramiters of talc mechanical activation in centrifugal and attrition mill.Phisicochemical Probl.Miner.Process, 50(2): 433-452

Andrić, L., Radulović, D., Pavlović, M., Petrov, M., Stojanović, J. (2020) Possibility of applying pyrophylite as filler in refractory coatings.Zaštita materijala, vol. 61, br. 3, str. 210-219

https://doi.org/10.5937/zasmat2003210A

Dojčinović, M. (2013) Razaranje materijala pod dejstvom kavitacije. Beograd: TMF, Monografija; str. 99

Dojčinović, M. (2013) Roughness measurement as an alternative method in evaluation of cavitation resistance of steel.Hemijska industrija, vol. 67, br. 2, str. 323-330

https://doi.org/10.2298/HEMIND120320064D

Dular, M., Stoffel, B., Širok, B. (2006) Development of a cavitation erosion model.Wear, 261(5-6): 642-655

https://doi.org/10.1016/j.wear.2006.01.020

Dular, M., Osterman, A. (2008) Pit clustering in cavitation erosion.Wear, 265(5-6): 811-820

https://doi.org/10.1016/j.wear.2008.01.005

Feng, C., Shuyun, J. (2014) Cavitation erosion of diamond-like carbon coating on stainless steel.Applied Surface Science, 292: 16-26

https://doi.org/10.1016/j.apsusc.2013.11.044

Franc, J.P., Michel, J.M. (2004) Fundamentals of cavitation. in: Series Fluid Mechanics and Its Applications, New York-Boston-Dordrecht: Kluwer Academic Publishers, p.306-323

https://doi.org/10.1007/1-4020-2233-6

García-Atance, F.G., Hadfield, M., Vieillard, C., Sekulic, J. (2009) Early stage cavitation erosion within ceramics: An experimental investigation.Ceramics International, 35(8): 3301-3312

https://doi.org/10.1016/j.ceramint.2009.05.020

Jasionowski, R., Pędzich, Z., Zasada, D., Przetakiewicz, W. (2015) Cavitation erosion resistance of FeAl intermetallic alloys and Al2O3-based ceramics.Archives of Metallurgy and Materials, 60(2): 671-675

https://doi.org/10.1515/amm-2015-0191

Laguna-Camacho, J.R., Lewis, R., Vite-Torres, M., Méndez-Méndez, J.V. (2013) A study of cavitation erosion on engineering materials.Wear, 301(1-2): 467-476

https://doi.org/10.1016/j.wear.2012.11.026

Mahadi, M.I., Palaniandy, S. (2010) Mechanochemical effect of dolomitic talc during fine grinding process in mortar grinder.International Journal of Mineral Processing, 94(3-4): 172-179

https://doi.org/10.1016/j.minpro.2010.02.008

Mlkvik, M., Olšiak, R., Knížat, B., Jedelský, J. (2014) Character of the cavitation erosion on selected metallic materials.EPJ Web of Conferences, 67: 02076

https://doi.org/10.1051/epjconf/20146702076

Mukhopadhyay, T.K., Ghatak, S., Maiti, H.S. (2009) Effect of pyrophyllite on the mullitization in triaxial porcelain system.Ceramics International, 35(4): 1493-1500

https://doi.org/10.1016/j.ceramint.2008.08.002

Niebuhr, D. (2007) Cavitation erosion behavior of ceramics in aqueous solutions.Wear, 263(1-6): 295-300

https://doi.org/10.1016/j.wear.2006.12.040

Pavlović, M., Dojčinović, M., Andrić, Lj., Radulović, D., Čeganjac, Z. (2019) Determination of cavitation resistance of sintered basalt samples. in: 51th International October Conference on Mining and Metallurgy, Proceedings, Bor, Serbia, 215-218

Pavlović, M., Dojčinović, M., Prokić-Cvetković, R., Andrić, Lj., Čeganjac, Z., Trumbulović, Lj. (2019) Cavitation wear of basalt glass ceramic.Materials, 12(9): 2-11

https://doi.org/10.3390/ma12091552

Pavlović, M., Dojčinović, M., Prokić-Cvetković, R., Andrić, Lj., Sarvan, M. (2019) Kontrola kvaliteta vatrostalnih premaza primenom ultrazvučne vibracione metode sa stacionarnim uzorkom. in: Quality 2019, Proceedings, Neum, 137-142

Pavlović, M., Dojčinović, M., Prokić-Cvetković, R., Andrić, L. (2019) The mechanisms of cavitation erosion of raw and sintered basalt.Science of Sintering, 51(4): 409-419

https://doi.org/10.2298/SOS1904409P

Qiu, N., Wang, L., Wu, S., Likhachev, D.S. (2015) Research on cavitation erosion and wear resistance performance of coatings.Engineering Failure Analysis, 55: 208-223

https://doi.org/10.1016/j.engfailanal.2015.06.003

Richman, R.H., McNaughton, W.P. (1990) Correlation of cavitation erosion behavior with mechanical properties of metals.Wear, 140(1): 63-82

https://doi.org/10.1016/0043-1648(90)90122-Q

Ristić, M.M. (1993) Principi nauke o materijalima. Beograd: Srpska akademija nauka i umetnosti - Odeljenje tehničkih nauka, posebna izdanja, Knjiga 36

Sanchez-Soto, P.J., Perez-Rodriguez, J.L. (1989) Thermal analysis of pyrophyllite transformations.Thermochimica Acta, 138(2): 267-276

https://doi.org/10.1016/0040-6031(89)87263-6

Terzić, A., Radulović, D., Pezo, M., Stojanović, J., Pezo, L., Radojević, Z., Andrić, L. (2020) Prediction model based on artificial neural network for pyrophyllite mechano-chemical activation as an integral step in production of cement binders.Construction and Building Materials, 258: 119721-119721

https://doi.org/10.1016/j.conbuildmat.2020.119721

Tomlinson, W.J., Matthews, S.J. (1994) Cavitation erosion of structural ceramics.Ceramics International, 20(3): 201-209

https://doi.org/10.1016/0272-8842(94)90040-X

Yekeler, M., Ulusoy, U., Hiçyılmaz, C. (2004) Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability.Powder Technology, 140(1-2): 68-78

https://doi.org/10.1016/j.powtec.2003.12.012

Downloads

Published

15-06-2021

Issue

Section

Articles