A review of amino acids used as corrosion inhibitors on iron metal/alloys in aggressive environments

Authors

  • Ifeyinwa Calista Ekeke Morgan State University, Civil Engineering Department, Baltimore, Maryland, USA + Federal University of Technology, Chemical Engineering Department, Owerri, Imo State, Nigeria Author
  • Steve Efe Morgan State University, Civil Engineering Department, Baltimore, Maryland, USA Author
  • Felix Chigozie Nwadire Michael Okpara University, Chemistry Department, Umudike, Umuahia, Abia State, Nigeria + Morgan State University, Chemistry Department, Baltimore, Maryland, USA Author

DOI:

https://doi.org/10.5937/zasmat2203318E

Keywords:

corrosion inhibitor, iron, metal, alloy, amino acid, computational methods

Abstract

Research into the use of safe and environmentally friendly corrosion inhibitors can pave the way for an understanding of their inhibition mechanisms in metallic alloy materials. This review seeks to present and discuss the research work reported in the literature on the use of amino acids and their derivatives as corrosion inhibitors for iron and its alloys in different aggressive solutions. This non-toxic, biodegradable and relatively cheap corrosion inhibitor has shown to be efficient as an inhibitor for metals/alloys in acidic, alkaline and neutral solutions depending on experimental conditions. Electrochemical and surface techniques were among the most often used techniques to evaluate the corrosion inhibition efficiency of amino acids. Highest values of inhibition efficiency can be obtained in the presence of ions as Iand Br. This review presents and discusses most of the contributions made in literature on the use of amino acids and their derivatives as corrosion inhibitors for iron and its alloys.

References

Abd, S.S., El-Rehim,, Ibrahim, M.A.M., Khaled, K.F. (2013) Chemical and Electrochemical Investigations of L-Arginine as Corrosion Extract for Steel in Hydrochloric Acid Solutions.J. Appl. Electrochem, 1409-1421; 8

https://doi.org/10.1016/S1452-3981(23)14107-1

Abdallah, M., Soliman, K., Alfattani, R., Fawzy, A., Ibrahim, M. (2022) Insight of corrosion mitigation performance of SABIC iron in 0.5 M HCl solution by tryptophan and histidine: Experimental and computational approaches.International Journal of Hydrogen Energy, 47(25): 12782-12797

https://doi.org/10.1016/j.ijhydene.2022.02.007

Abdel-Fatah, H., Abdel-Samad, H., Hassan, A., Elsehiety, H. (2014) Effect of variation of the structure of amino acids on inhibition of the corrosion of lowalloy steel in ammoniated citric acid solutions.Research on Chemical Intermediates, 40: 1675-1690

https://doi.org/10.1007/s11164-013-1073-8

Abdel-Fatah, H., Kamel, M., Hassan, A., Rashwan, S., Wahaab, S., El-Sehiety, H. (2017) Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media.Arabian Journal of Chemistry, 10: 1164-1171

https://doi.org/10.1016/j.arabjc.2013.02.010

Abdel-Fatah, H., Rashwan, S., Wahaab, S., Hassan, A. (2016) Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid.Arabian Journal of Chemistry, 9: 1069-1076

https://doi.org/10.1016/j.arabjc.2011.11.012

Abd-El-nabey, R., Khalil, N., Mohamed, A. (1985) Inhibition by amino acids of the corrosion of steel in acid.Surf. Technol, 24, 383-389

https://doi.org/10.1016/0376-4583(85)90056-1

Alagbe, M., Umoru, L., Afonja, A., Olorunniwo, O. (2006) Effects of different amino-acid derivatives on the inhibition of NST-44 mild steel corrosion in lime fluid.Journal of Applied Sciences, 6: 1142-1147

https://doi.org/10.3923/jas.2006.1142.1147

Alagbe, M., Umoru, I., Afonja, A., Olorunniwo, O. (2009) Investigation of the effect of different amino-acid derivatives on the inhibition of NST-44 carbon steel corrosion in cassava fluid.Anti-Corrosion Methods and Materials, 56: 43-50

https://doi.org/10.1108/00035590910923455

Alamiery, A., Mohamad, A., Kadhum, A., Takriff, M. (2022) Comparative data on corrosion protection of mild steel in HCl using two new thiazoles.Data in Brief, 40: 107838-107838

https://doi.org/10.1016/j.dib.2022.107838

Alamry, K., Aslam, R., Khan, A., Hussein, M., Tashkandi, N. (2022) Evaluation of corrosion inhibition performance of thiazolidine-2,4-diones and its amino derivative: Gravimetric, electrochemical, spectroscopic, and surface morphological studies.Process Safety and Environmental Protection, 159: 178-197

https://doi.org/10.1016/j.psep.2021.12.061

Al-Fakih, A., Algamal, Z.Y., Lee, M., Abdallah, H., Maarof, H., Aziz, M. (2016) Quantitative structureactivity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression.Journal of Chemometrics, 30: 361-368

https://doi.org/10.1002/cem.2800

Al-Sabagh, A., Nasser, N., El-Azabawy, O., Tabey, A. (2016) Corrosion inhibition behavior of new synthesized nonionic surfactants based on amino acid on carbon steel in acid media.Journal of Molecular Liquids, 219: 1078-1088

https://doi.org/10.1016/j.molliq.2016.03.048

Amin, M., Gaber, A., Mohsen, Q. (2011) Monitoring corrosion and corrosion control of low alloy ASTM A213 grade T22 boiler steel in HCl solutions.Arabian Journal of Chemistry, 4: 223-229

https://doi.org/10.1016/j.arabjc.2010.06.040

Amin, M., Hazzazi, O., Kandemirli, F., Saracoglu, M. (2012) Inhibition performance and adsorptive behavior of three amino acids on cold-rolled steel in 1.0 M HCl-chemical, electrochemical, and morphological studies.Corrosion, 68: 688-698

https://doi.org/10.5006/0506

Amin, M., Abd, E.R.S., El-Naggar, M., Abdelfatah, H. (2009) Assessment of EFM as a new nondestructive technique for monitoring the corrosion inhibition of low chromium alloy steel in 0.5 M HCl by Tyrosine.Journal of Materials Science, 44, 6258-6272

https://doi.org/10.1007/s10853-009-3856-2

Amin, M., Ibrahim, M. (2011) Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized Glycine derivative.Corrosion Science, 53: 873-885

https://doi.org/10.1016/j.corsci.2010.10.022

Amin, M., Khaled, K., Fadl-Allah, S. (2010) Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions: Experimental and theoretical studies.Corrosion Science, 52: 140-151

https://doi.org/10.1016/j.corsci.2009.08.055

Amin, M., Rehim, S., Abdel-Fatah, H. (2009) Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation me.Corrosion Science, 51, 882-894

https://doi.org/10.1016/j.corsci.2009.01.006

Amin, M.A., Hazzazi, O.A., Kandemirli, F., Saracoglu, M. (2012) Inhibition performance and adsorptive behavior of three amino acids on coldrolled steel in 1.0 M HCl-chemical, electrochemical, and morphological studies.Corrosion, 68, 688-698

https://doi.org/10.5006/0506

Amin, M.A., Ei-Rehim, S.S., El-Sherbini, E.E.F., Hazzazi, O.A., Abbas, M.N. (2009) Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions: Part I: Weight loss, polarization, impedance EFM and EDX studies.Corrosion Science, 51(3): 658-667

https://doi.org/10.1016/j.corsci.2008.12.008

Aouniti, A., Khaled, K., Hammouti, B. (2013) Correlation between inhibition efficiency and chemical structure of some amino acids on the corrosion of Armco iron in molar HCl.International Journal of Electrochemical Science, 8, 5925-5943

https://doi.org/10.1016/S1452-3981(23)14731-6

Appa, R., Venkateswara, R., Srinivasa, R., Sreedhar, B. (2010) Tungstate as a synergist to phosphonatebased formulation for corrosion control of carbon steel in nearly neutral aqueous environment.Journal of Chemical Sciences, 122, 639-649

https://doi.org/10.1007/s12039-010-0099-3

Appa, R., Srinivasa, R., Venkateswara, M. (2008) Environmentally friendly ternary inhibitor formulation based on N, N-bis (phosphonomethyl) glycine.Corrosion Engineering Science and Technology, 43, 46-53

https://doi.org/10.1179/174327807X214635

Appa, R., Venkateswara, R., Srinivasa, R., Sreedhar, B. (2011) Synergistic effect of N, N-bis (phosphonomethyl) glycine and zinc ions in corrosion control of carbon steel in cooling water systems.Chemical Engineering Communications, 198, 1505-1529

https://doi.org/10.1080/00986445.2010.525200

Ashassi-Sorkhabi, H., Asghari, E. (2008) Effect of hydrodynamic conditions on the inhibition performance of l-methionine as a 'green' inhibitor.Electrochimica Acta, 54(2): 162

https://doi.org/10.1016/j.electacta.2008.08.024

Ashassi-Sorkhabi, H., Asghari, E. (2010) Electrochemical corrosion behavior of Al7075 rotating disc electrode in neutral solution containing ʟ-Glutamine as a green inhibitor.Journal of Applied Electrochemistry, 40: 631-637

https://doi.org/10.1007/s10800-009-0038-5

Ashassi-Sorkhabia, H., Majidib, M.R., Seyyedi, K. (2004) Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution.Applied Surface Science, 225(1-4): 176

https://doi.org/10.1016/j.apsusc.2003.10.007

Ayappan, G.R.S. (2015) Study of corrosion inhibition properties of novel semicarbazones on mild steel in acidic solutions.Journal of Chilean Chemical Society, 60(1)

https://doi.org/10.4067/S0717-97072015000100004

Badawy, E.G.W. (2013) The use of Cysteine, N-acetyl cysteine and Methionine as environmentally friendly corrosion inhibitors for Cu-10Al-5Ni alloy in neutral chloride solutions.Electrochimica Acta, 108, 860-866

https://doi.org/10.1016/j.electacta.2013.06.079

Bell, G., Edgemon, G., Reid, S. (1998) NACE international corrosion conference. San Diego (CA), USA, 22-27

Bilgic, G.G.S. (2010) A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel.Corrosion Science, 52, 3435-3443

https://doi.org/10.1016/j.corsci.2010.06.015

Bobina, M., Kellenberger, A., Millet, J., Muntean, C., Vaszilcsin, N. (2013) Corrosion resistance of carbon steel in weak acid solutions in the presence of ʟ-Histidine as corrosion inhibitor.Corrosion Science, 69, 389-395

https://doi.org/10.1016/j.corsci.2012.12.020

Bobina, M., Vaszilcsin, N., Muntean, C. (2013) Influence of Tryptophan on the corrosion process of carbon steel in aqueous weak acid solutions.Revista de Chimie,-Bucharest, 64, 83-88

Bosch, R.W., Hubrecht, J., Bogaerts, W.F., Syrett, B.C. (2001) Electrochemical frequency modulation: A new electrochemical technique for online corrosion monitoring.Corrosion, 57(1): 60

https://doi.org/10.5006/1.3290331

Bouanis, M., Tourabi, M., Nyassi, A., Zarrouk, A., Jama, C., Bentiss, F. (2016) Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies.Applied Surface Science, 389: 952-966

https://doi.org/10.1016/j.apsusc.2016.07.115

Bouzidi, D., Chetouani, A., Hammouti, B., Taleb, S., Taleb, M., Aldeyab, S. (2012) Electrochemical corrosion behaviour of iron rotating disc electrode in physiological medium containing amino acids and amino esters as an inhibitor.International Journal of Electrochemical Science, 7: 2334-2348

https://doi.org/10.1016/S1452-3981(23)13883-1

Cang, H., Fei, Z., Shi, W., Xu, Q. (2012) Experimental and theoretical study for corrosion inhibition of mild steel by ʟ-Cysteine.International Journal of Electrochemical Science, 7: 10121-10131

https://doi.org/10.1016/S1452-3981(23)16263-8

Cang, H., Shi, W., Lu, Y., Shao, J., Xu, Q. (2012) Cysteine as inhibitor on the corrosion of mild steel in sulphuric acid and hydrochloric acid solutions.Asian Journal of Chemistry, 24: 3675-3678

Carlsen, L. (2009) The interplay between QSAR/QSPR studies and partial order ranking and formal concept analyses.International Journal of Molecular Sciences, 10(4): 1628-1657

https://doi.org/10.3390/ijms10041628

Chaia, C., Xua, Y., Lia, D., Zhaoa, X., Xua, Y., Zhanga, L., Wua, Y. (2019) Cysteamine modified polyaspartic acid as a new class of green corrosion inhibitor for mild steel in sulfuric acid medium: Synthesis, electrochemical, surface study and theoretical calculation.Progress in organic coatings, 129: 159-170

https://doi.org/10.1016/j.porgcoat.2018.12.028

Cottis, R. (2001) Interpretation of electrochemical noise data.Corrosion, 57, 265-285

https://doi.org/10.5006/1.3290350

Cui, R., Gu, N., Li, C. (2011) Polyaspartic acid as a green corrosion inhibitor for carbon steel.Materials and Corrosion, 62, 362-369

https://doi.org/10.1002/maco.200905511

Deng, Q., Shi, H., Ding, N., Chen, B., He, X., Liu, G., Tang, Y., Long, Y., Chen, G. (2012) Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl.Corrosion Science, 57: 220-227

https://doi.org/10.1016/j.corsci.2011.12.014

Deng, Q., Xiao-Peng, H., Hong-Wei, S., Bao-Qin, C. (2012) Concise Cu-I-catalyzed azidealkyne 1,3dipolar cycloaddition reaction ligation remarkably enhances the corrosion inhibitive potency of natural amino acids for mild steel in HCl.Industrial and Engineering Chemistry Research, 51, 7160-7169

https://doi.org/10.1021/ie3004557

Döner, A., Yüce, A., Kardas, G. (2013) Inhibition effect of rhodanine-N-acetic acid on copper corrosion in acidic media.Industrial and Engineering Chemistry Research, 52, 9709-9718

https://doi.org/10.1021/ie400160x

Döner, A., Kardas, G. (2011) N-Aminorhodanine as an effective corrosion inhibitor for mild steel in 0.5M H2SO4.Corrosion Science, 53(12): 4223-4232

https://doi.org/10.1016/j.corsci.2011.08.032

Döner, A., Sahin, E., Kardas, G., Serindag, O. (2013) Investigation of corrosion inhibition effect of 3-[(2hydroxy-benzylidene)amino]-2-thioxo-thiazolidin4one on corrosion of mild steel in the acidic medium.Corrosion Science, 66, 278-284

https://doi.org/10.1016/j.corsci.2012.09.030

Eddy, N., Awe, F., Gimba, C., Ibisi, N., Ebenso, E. (2011) QSAR, experimental and computational chemistry simulation studies on the inhibition potentials of some amino acids for the corrosion of mild steel in 0.1 M HCl.International Journal of Electrochemical Science, 6: 931-957

https://doi.org/10.1016/S1452-3981(23)18447-1

https://doi.org/10.1016/S1452-3981(23)18170-3

https://doi.org/10.1016/S1452-3981(23)15046-2

https://doi.org/10.1016/S1452-3981(23)18330-1

Eddy, N., Ibok, U., Ita, B. (2011) QSAR and quantum chemical studies on the inhibition potentials of some amino acids for the corrosion of mild steel in H2SO4.Journal of Computational Methods in Sciences and Engineering, 11, 25-43

https://doi.org/10.3233/JCM-2011-0290

Eddy, N. (2011) Experimental and theoretical studies on some amino acids and their potential activity as inhibitors for the corrosion of mild steel.Journal of Advanced Research, 2(2): 35-47

https://doi.org/10.1016/j.jare.2010.08.005

El, I.B., Jmiai, A., Bazzi, L., El, I.S. (2020) Amino acids and their derivatives as corrosion inhibitors for metals and alloys.Arabian Journal of Chemistry, 13, 740 - 771

https://doi.org/10.1016/j.arabjc.2017.07.013

Emran, K., Hamdona, S., Balawi, A. (2013) Investigation of the corrosion resistance of some safely additives and mixed salts-scales on S41000 stainless steel surface in synthetic seawater.International Journal of Electrochemical Science, 8: 8126-8137

https://doi.org/10.1016/S1452-3981(23)12873-2

Emregül, K., Atakol, O. (2003) Corrosion inhibition of mild steel with Schiff base compounds in 1 M HCl.Materials Chemistry and Physics, 82, 188-193

https://doi.org/10.1016/S0254-0584(03)00204-9

Emregül, K.C., Hayvalı, M. (2004) Studies on the effect of vanillin and protocatechualdehyde on the corrosion of steel in hydrochloric acid.Materials Chemistry and Physics, 83(2-3): 209-216

https://doi.org/10.1016/j.matchemphys.2003.08.030

Engelken, B.A.R. (2002) Chromium-based regulations and greening in metal finishing industries in the USA.Environmental Science & Policy, 5, 121-133

https://doi.org/10.1016/S1462-9011(02)00028-X

Esmailzadeh, S., Aliofkhazraei, M., Sarlak, H. (2018) Interpretation of cyclic potentiodynamic polarization test results for study of corrosion behavior of metals: A review.Protection of Metals and Physical Chemistry of Surfaces, 54(5), 976-989

https://doi.org/10.1134/S207020511805026X

Feng, W., Patel, S.M., Young, J., Zunino, M., Xanthos (2007) Smart polymeric coatings-recent advances.Advances in Polymer Technology, 26: 1-13

https://doi.org/10.1002/adv.20083

Finšgar, M. (2020) Electrochemical, 3D topography, XPS, and ToF-SIMS analyses of 4-methyl-2phenylimidazole as a corrosion inhibitor for brass.Corrosion Science, 169, 108632

https://doi.org/10.1016/j.corsci.2020.108632

Fu, J., Li, S., Cao, I., Wang, Y., Yan, I., Lu, L. (2010) ʟ-tryptophan as green corrosion inhibitor for low carbon steel in hydrochloric acid solution.Journal of Materials Science, 45: 979-986

https://doi.org/10.1007/s10853-009-4028-0

https://doi.org/10.1007/s10853-010-4720-0

Fu, J., Li, S., Wang, Y., Liu, X., Lu, L. (2011) Computational and electrochemical studies on the inhibition of corrosion of mild steel by l-Cysteine and its derivatives.Journal of Materials Science, 46(10): 3550-3559

https://doi.org/10.1007/s10853-011-5267-4

Gaidis, J. (2004) Chemistry of corrosion inhibitors.Cement & Concrete Composites, 26, 181-189

https://doi.org/10.1016/S0958-9465(03)00037-4

Gece, G. (2008) The use of quantum chemical methods in corrosion inhibitor studies.Corrosion Science, 50(11): 2981-2992

https://doi.org/10.1016/j.corsci.2008.08.043

Gece, G., Bilgic, S., Tu¨rksen, O. (2010) Quantum chemical studies of some amino acids on the corrosion of cobalt in sulfuric acid solution.Materials and Corrosion, 61: 141-146

https://doi.org/10.1002/maco.200905251

Gowri, S., Sathiyabama, J., Rajendran, S., Kennedy, Z., Devi, S. (2013) Corrosion inhibition of carbon steel in sea water by Glutamic acid-Zn 2+ system.Chemical Science Transactions, 2: 275-281

https://doi.org/10.7598/cst2013.327

Guo, L., Dong, W., Zhang, S. (2014) Theoretical challenges in understanding the inhibition mechanism of copper corrosion in acid media in the presence of three triazole derivatives.Royal Society of Chemistry Advances, 4: 41956-41967

https://doi.org/10.1039/C4RA04931D

Gupta, N., Verma, C., Quraishi, M., Mukherjee, A. (2016) Schiff's bases derived from l-lysine and aromatic aldehydes as green corrosion inhibitors for mild steel: Experimental and theoretical studies.Journal of Molecular Liquids, 215: 47-57

https://doi.org/10.1016/j.molliq.2015.12.027

Gustincic, D., Kokalj, A. (2015) A DFT study of adsorption of imidazole, triazole, and tetrazole on oxidized copper surfaces: Cu2O(111) and Cu2O(111)-w/o-Cu CUS.Physical Chemistry Chemical Physics, 17: 28602-28615

https://doi.org/10.1039/C5CP03647J

Ha¨ussinger, K.M.D. (1992) Mammalian amino acid transport. Springer, Science & Business Media

Haldhar, R., Prasad, D., Saxena, A. (2018) Armoracia rusticana as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5 M sulphuric acid: Experimental and theoretical investigations.Journal of Environmental Chemical Engineering

https://doi.org/10.1016/j.jece.2018.08.025

Haldhar, R., Prasad, D., Saxena, A. (2018) Myristica fragrans extract as an eco-friendly corrosion inhibitor for mild steel in 0.5 M H2SO4 solution.Journal of Environmental Chemical Engineering, 6(2), 2290-2301

https://doi.org/10.1016/j.jece.2018.03.023

Hamed, E., El-Rehim, S., El-Shahat, M., Shaltot, A. (2012) Corrosion inhibition of nickel in H2SO4 solution by Alanine.Material Science and Engineering B, 177: 441-448

https://doi.org/10.1016/j.mseb.2012.01.016

Hammouti, B., Aouniti, A., Taleb, M., Brighli, M., Kertit, S. (1995) ʟ-methionine methyl-ester hydrochloride as a corrosion-inhibitor of iron in acid chloride solution.Corrosion, 51, 411-416

https://doi.org/10.5006/1.3293606

Hluchan, V., Wheeler, B.L., Hackerman, N. (1988) Amino acids as corrosion inhibitors in hydrochloric acid solutions.Materials and Corrosion/Werkstoffe und Korrosion, 39(11): 512-517

https://doi.org/10.1002/maco.19880391106

Imjjad, A., Abbiche, K., Mellaoui, M., Jmiai, A., Baraka, N., Taleb, A., Bazzi, I., Issami, S., Hilali, M., Said, R., Hochlaf, M. (2022) Corrosion inhibition of mild steel by aminobenzoic acid isomers in hydrochloric acid solution: Efficiency and adsorption mechanisms.Applied Surface Science, 576: 151780-151780

https://doi.org/10.1016/j.apsusc.2021.151780

Jano, A., Lame, G.A., Kokalari, T.E. (2014) The inhibition effects of Methionine on mild steel in acidic media.Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, 25: 39-42

https://doi.org/10.2478/auoc-2014-0007

Jensen, F. (2007) Introduction to computational chemistry. Chichester: John Wiley & Sons

Kabanda, M.M., Obot, I.B., Ebenso, E.E. (2013) Computational study of some amino acid derivatives as potential corrosion inhibitors for different metal surfaces and in different media.International Journal of Electrochemical Science, 8: 10839-10850

https://doi.org/10.1016/S1452-3981(23)13152-X

Kalota, D., Silverman, D. (1994) Behavior of asparticacid as a corrosion-inhibitor for steel.Corrosion, 50: 138-145

https://doi.org/10.5006/1.3293502

Kandemirli, F., Saracoglu, M., Amin, M., Basaran, M., Vurdu, C. (2014) The quantum chemical calculations of serine, threonine and glutamine.International Journal of Electrochemical Science, 9: 3819-3827

https://doi.org/10.1016/S1452-3981(23)08053-7

Kasprzhitskii, A., Lazorenko, G., Nazdracheva, T., Yavna, V. (2021) Comparative computational study of ʟ-amino acids as green corrosion inhibitors for mild steel.Computation, (1): 9-9

https://doi.org/10.3390/computation9010001

Kaya, S., Tu¨zu¨n, B., Kaya, C., Obot, I. (2016) Determination of corrosion inhibition effects of amino acids: Quantum chemical and molecular dynamic simulation study.Journal of the Taiwan Institute of Chemical Engineers, 58: 528-535

https://doi.org/10.1016/j.jtice.2015.06.009

Kelly, R., Inman, M., Hudson, J. (1996) Electrochemical noise measurement for corrosion applications. West Conshohocken USA: ASTM, 1277, 101-113

https://doi.org/10.1520/STP37954S

Kendig, M., Hon, M., Warren, I. (2003) Smart' corrosion inhibiting coatings.Progress in Organic Coatings, 47: 183-189

https://doi.org/10.1016/S0300-9440(03)00137-1

Khaled, K., El-Sherik, A. (2013) Using molecular dynamics simulations and genetic function approximation to model corrosion inhibition of iron in chloride solutions.International Journal of Electrochemical Science, 8: 10022-10043

https://doi.org/10.1016/S1452-3981(23)13029-X

Khaled, K., Sherik, A. (2013) Using neural networks for corrosion inhibition efficiency prediction during corrosion of steel in chloride solutions.International Journal of Electrochemical Science, 8: 9918-9935

https://doi.org/10.1016/S1452-3981(23)13022-7

Khaled, K., Al-Mhyawi, S. (2013) Electrochemical and density function theory investigations of ʟ-Arginine as corrosion inhibitor for steel in 3.5% NaCl.International Journal of Electrochemical Science, 8: 4055-4072

https://doi.org/10.1016/S1452-3981(23)14453-1

https://doi.org/10.1016/S1452-3981(23)14107-1

Khaled, K., Abdelshafi, N., El-Maghraby, A., Aouniti, A., Almobarak, N., Hammouti, B. (2012) Alanine as corrosion inhibitor for iron in acid medium: A molecular level study.International Journal of Electrochemical Science, 7: 12706-12719

https://doi.org/10.1016/S1452-3981(23)16578-3

Kokalj, A. (2010) Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance.Electrochimica Acta, 56: 745-755

https://doi.org/10.1016/j.electacta.2010.09.065

Kovacevic, N., Milosev, I., Kokalj, A. (2015) The roles of mercapto, benzene, and methyl groups in the corrosion inhibition of imidazoles on copper: II. Inhibitor-copper bonding.Corrosion Science, 98: 457-470

https://doi.org/10.1016/j.corsci.2015.05.041

Kovacevic', N., Kokalj, A. (2011) Analysis of molecular electronic structure of imidazole-and benzimidazole-based inhibitors: A simple recipe for qualitative estimation of chemical hardness.Corrosion Science, 53: 909-921

https://doi.org/10.1016/j.corsci.2010.11.016

Kovačević, N., Kokalj, A. (2013) Chemistry of the interaction between azole type corrosion inhibitor molecules and metal surfaces.Materials Chemistry and Physics, 137(1): 331-339

https://doi.org/10.1016/j.matchemphys.2012.09.030

Kovačević, N., Kokalj, A. (2013) The relation between adsorption bonding and corrosion inhibition of azole molecules on copper.Corrosion Science, 73: 7-17

https://doi.org/10.1016/j.corsci.2013.03.016

Kowsari, E., Armanb, S., Shahini, M., Zandi, H., Ehsani, A., Naderif, R., Pourghasemihanza, A., Mehdipour, M. (2016) In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1 M HCl solution.Corrosion Science, 112: 73-85

https://doi.org/10.1016/j.corsci.2016.07.015

Lee, C., Yang, W., Parr, R.G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density.Physical Review B, 37(2), str. 785-789

https://doi.org/10.1103/PhysRevB.37.785

Li, W., Calle, L. (2007) A smart coating for the early detection and inhibition of corrosion. in: The smart coatings 2007 conference, 191-191

Li, X., Deng, S., Fu, H. (2009) Synergistic inhibition effect of red tetrazolium and uracil on the corrosion of cold rolled steel in H3PO4 solution: Weight loss, electrochemical, and AFM approaches.Materials Chemistry and Physics, 115(2-3), 815-824

https://doi.org/10.1016/j.matchemphys.2009.02.025

Liu, P., Long, W. (2009) Current mathematical methods used in QSAR/QSPR studies.International Journal of Molecular Sciences, 10, 1978-1998

https://doi.org/10.3390/ijms10051978

Liu, X., Okafor, P., Pan, X., Njoku, D., Uwakwe, K., Zheng, Y. (2020) Corrosion inhibition and adsorption properties of cerium-amino acid complexes on mild steel in acidic media: Experimental and DFT studies.Journal of Adhesion Science and Technology, 34(19), 2047-2074

https://doi.org/10.1080/01694243.2020.1749474

Luna, M., Manh, T., Sierra, R., Flores, J., Rojas, L., Estrada, E. (2019) Study of corrosion behavior of API 5L X52 steel in sulfuric acid in the presence of ionic liquid 1-ethyl 3-methylimidazolium thiocyanate as corrosion inhibitor.Journal of Molecular Liquids, 289: 111106-111106

https://doi.org/10.1016/j.molliq.2019.111106

Madkour, L., Ghoneim, M. (1997) Inhibition of the corrosion of 16/14 austenitic stainless steel by oxygen and nitrogen containing compounds.Bulletin of Electrochemistry, 13(1): 1-7

Mansfeld, F. (2009) Fundamental aspects of the polarization resistance technique-the early days.Journal of Solid-State Electrochemistry, 13, 515-520

https://doi.org/10.1007/s10008-008-0652-x

Masadeh, S. (2015) The effect of added carbon black to concrete mix on corrosion of steel in concrete.Journal of Minerals and Materials Characterization and Engineering, 3, 271-276

https://doi.org/10.4236/jmmce.2015.34029

Mendonca, G., Costa, S., Freire, V., Casciano, P., Correia, A. (2017) Lima-Neto Pd understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods.Corrosion Science, 115: 41-55

https://doi.org/10.1016/j.corsci.2016.11.012

Mert, B., Mert, M., Kardas, G., Yazıcı, B. (2011) Experimental and theoretical investigation of 3amino-1,2,4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium.Corrosion Science, 53, 4265-4272

https://doi.org/10.1016/j.corsci.2011.08.038

Migahed, M., Rashwan, S., Kamel, M., Habib, R. (2016) Synthesis, characterization of polyaspartic acidglycine adduct and evaluation of their performance as scale and corrosion inhibitor in desalination water plants.Journal of Molecular Liquids, 224: 849-858

https://doi.org/10.1016/j.molliq.2016.10.091

Migahed, M.A., Azzam, E.M.S., Morsy, S.M.I. (2009) Electrochemical behaviour of carbon steel in acid chloride solution in the presence of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles.Corrosion Science, 51(8): 1636-1644

https://doi.org/10.1016/j.corsci.2009.04.010

Mihara, H., Hayakawa, Y., Kagaku, D. (1969) Effects of oxycarbonic acids on corrosion of aluminum in alkaline medium.Journal of The Electrochemical Society, Japan, 37

Miralrio, A., Vázquez, A. (2020) Plant extracts as green corrosion inhibitors for different metal surfaces and corrosive media: A review.Processes, (8): 942-942

https://doi.org/10.3390/pr8080942

Mobin, M., Parveen, M., Aslam, H. (2022) Effect of different additives, temperature, and immersion time on the inhibition behavior of L-valine for mild steel corrosion in 5% HCl solution.Journal of Physics and Chemistry of Solids, 110422-110422

https://doi.org/10.1016/j.jpcs.2021.110422

Mobin, M., Parveen, M., Rafiquee, M. (2017) Synergistic effect of sodium dodecyl sulfate and cetyltrimethyl ammonium bromide on the corrosion inhibition behavior of ʟ-Methionine on mild steel in acidic medium.Arabian Journal of Chemistry, 10, S1364-S1372

https://doi.org/10.1016/j.arabjc.2013.04.006

Mobin, M., Zehra, S., Parveen, M. (2016) l-Cysteine as corrosion inhibitor for mild steel in 1 M HCl and synergistic effect of anionic, cationic and non-ionic surfactants.Journal of Molecular Liquids, 216: 598-607

https://doi.org/10.1016/j.molliq.2016.01.087

Morad, M. (2008) Corrosion inhibition of mild steel in sulfamic acid solution by S-containing amino acids.Journal of Applied Electrochemistry, 38: 1509-1518

https://doi.org/10.1007/s10800-008-9595-2

Morad, M.S. (2005) Effect of amino acids containing sulfur on the corrosion of mild steel in phosphoric acid solutions containing Cl, Fand Fe3+ ions.J. Appl. Electrochem., 35: 889-895

https://doi.org/10.1007/s10800-005-4745-2

Moustafa, A., Abdel-Rahman, H., Mabrouk, D., Omar, A. (2022) Mass transfer role in electropolishing of carbon steel in H3PO4 containing amino acids: Electrochemical, computational, SEM/EDX, and stylus profilometer investigation.Alexandria Engineering Journal, (8): 6305-6327

https://doi.org/10.1016/j.aej.2021.11.062

Nsakabwebwe, C., Makhatha, M., Tsoeunyane, G., Baruwa, A. (2022) Corrosion inhibition efficiency of polyvinylpyrrolidone-cysteine on mild steel in 1.0 m hcl solution.Journal of Bio-and Tribo-Corrosion, 8(2),48

https://doi.org/10.1007/s40735-022-00647-3

Obot, I., Onyeachu, I., Zeino, A., Umoren, S. (2019) Electrochemical noise (EN) technique: Review of recent practical applications to corrosion electrochemistry research.Journal of Adhesion Science and Technolog, 33:13, 1453-1496

https://doi.org/10.1080/01694243.2019.1587224

Obot, I., Macdonald, D., Gasem, Z. (2015) Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview.Corrosion Science, 99: 1-30

https://doi.org/10.1016/j.corsci.2015.01.037

Oguzie, E., Li, Y., Wang, F. (2007) Effect of 2-amino-3-mercaptopropanoic acid (cysteine) on the corrosion behaviour of low carbon steel in sulphuric acid.Electrochimica Acta, 53(2): 909-914

https://doi.org/10.1016/j.electacta.2007.07.076

Oguzie, E., Li, Y., Wang, F. (2007) Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel: Synergistic effect of Methionine and iodide ion.Electrochimica Acta, 52: 6988-6996

https://doi.org/10.1016/j.electacta.2007.05.023

Olivares, O., Likhanova, N.V., Gomez, B., Navarrete, J., Llanos-Serrano, M.E., Arce, E., Hallen, J.M. (2006) Electrochemical and XPS studies of decylamides of α-amino acids adsorption on carbon steel in acidic environment.Applied Surface Science, 252(8): 2894

https://doi.org/10.1016/j.apsusc.2005.04.040

Olivares-Xometl, O., Likhanova, N., Dominguezaguilar, M., Arce, E., Dorantesc, H., Arellanes-Lozada, P. (2008) Synthesis and corrosion inhibition of alphaamino acids alkylamides for mild steel in acidic environment.Materials Chemistry and Physics, 110: 344-351

https://doi.org/10.1016/j.matchemphys.2008.02.010

Ormellese, M., Lazzari, L., Goidanich, S., Fumagalli, G., Brenna, A. (2009) A study of organic substances as inhibitors for chloride-induced corrosion in concrete.Corrosion Science, 51: 2959-2968

https://doi.org/10.1016/j.corsci.2009.08.018

Oubaaqa, M., Ouakki, M., Rbaa, M., Abousalem, A., Maatallah, M., Benhiba, F., Jarid, A., Touhami, M., Zarrouk, A. (2021) Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations.Journal of Molecular Liquids, 334: 116520-116520

https://doi.org/10.1016/j.molliq.2021.116520

Ozcan, M. (2008) AC impedance measurement of Cystine adsorption at mild steel/sulfuric acid interface as corrosion inhibitor.Journal of Solid State Electrochemistry, 12: 1653-1661

https://doi.org/10.1007/s10008-008-0551-1

Özcan, M., Karadağ, F., Dehri, I. (2008) Interfacial behavior of cysteine between mild steel and sulfuric acid as corrosion inhibitor.Acta Physico Chimica Sinic, 24, 1387-1392

https://doi.org/10.1016/S1872-1508(08)60059-5

Panchenko, Y., Arshakov, A.M. (2016) Long-term prediction of metal corrosion losses in atmosphere using a power-linear function.Corrosion Science, 109, 217-229

https://doi.org/10.1016/j.corsci.2016.04.002

Parr, R., Yang, W. (1989) Density functional theory of atoms and molecules. Oxford: Oxford University Press

Pathak, K.R.R. (2020) Open circuit potential, polarization and thermometric study of guar gum as corrosion inhibitor on mild steel by in acidic media.Asian Journal of Chemical Sciences, 8(2): 55-60

https://doi.org/10.9734/ajocs/2020/v8i219040

Qian, B., Wang, J., Zheng, M., Hou, B. (2013) Synergistic effect of polyaspartic acid and iodide ion on corrosion inhibition of mild steel in H2SO4.Corrosion Science, 75: 184-192

https://doi.org/10.1016/j.corsci.2013.06.001

Qian, H., Chang, W., Liu, W., Cui, T., Li, Z., Guo, D., Kwok, C., Tam, L., Zhang, D. (2022) Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa.Bioelectrochemistry, 107953-107953

https://doi.org/10.1016/j.bioelechem.2021.107953

Rahiman, A., Subhashini, S. (2013) A novel watersoluble, conducting polymer composite for mild steel acid corrosion inhibition.Journal of Applied Polymer Science, 127: 3084-3092

https://doi.org/10.1002/app.37661

Rahiman, A., Subhashini, S., Rajalakshmi, R. (2013) Water soluble conducting polymer composite of polyvinyl alcohol and leucine: An effective acid corrosion inhibitor for mild steel.Werkst Korros, 64, 74-82

https://doi.org/10.1002/maco.201106096

Rahiman, A., Subhashini, S. (2017) Corrosion inhibition, adsorption and thermodynamic properties of poly(vinyl alcohol-cysteine) in molar HCl.Arabian Journal of Chemistry, 10, S3358-S3366

https://doi.org/10.1016/j.arabjc.2014.01.016

Raja, A., Rajendran, S., Satyabama, P. (2013) Inhibition of corrosion of carbon steel in well water by DL-phenylalanineʟ Zn2+ system.Journal of Chemistry, 8

https://doi.org/10.1155/2013/720965

Revie, R., Uhling, H. (2007) Corrosion and corrosion control. Wiley, fourth edition, p.1-3

https://doi.org/10.1002/9780470277270

Sarkar, T., Yadav, M., Obot, I. (2022) Mechanistic evaluation of adsorption and corrosion inhibition capabilities of novel indoline compounds for oil well/tubing steel in 15% HCl.Chemical Engineering Journal, 431: 133481-133481

https://doi.org/10.1016/j.cej.2021.133481

Saxena, A., Thakur, K., Bhardwaj, N. (2020) Electrochemical studies and surface examination of low carbon steel by applying the extract of Musa acuminata.Surfaces and Interfaces, 18, 100436

https://doi.org/10.1016/j.surfin.2020.100436

Selassie, C. (2003) History of quantitative structure activity relationships. in: Abraham, D.J. [ed.] Burger's medicinal chemistry and drug discovery, John Wiley & Sons

https://doi.org/10.1002/0471266949.bmc001

Shams, A., Din, E.L., Arain, R. (1998) Thermometric, gravimetric, and potentiometric study of corrosion of iron under conditions of reaction Fe + 2Fe3+ = 3Fe2+.British Corrosion Journal, 33 (3), 189-196

https://doi.org/10.1179/000705998798115399

Sheir, L., Jarman, R., Burstein, G. (1994) Corrosion. Great Britain: Butterworth-Heinemann

Shkirskiy, V. (2015) Corrosion inhibition of galvanized steel by LDH -inhibitor hybrids: Mechanisms of inhibitor release and corrosion reaction. Universite Pierre et Marie Curie

Shkirskiy, V., Keil, P., Hintze-Brueningb, H., Leroux, F., Brisset, F., Oglea, K., Volovitch, P. (2015) The effects of ʟ-cysteine on the inhibition and accelerated dissolution processes of zinc metal.Corrosion. Science, 100: 101-112

https://doi.org/10.1016/j.corsci.2015.07.010

Sikes, L.B.C. (1991) Corrosion inhibition by thermal Polyaspartate.ACS Symp. Ser., 444, 263-279

https://doi.org/10.1021/bk-1991-0444.ch021

Silva, A., Agostinho, S., Barcia, O., Cordeiro, G., D'elia, E. (2006) The effect of cysteine on the corrosion of 304L stainless steel in sulphuric acid.Corrosion Science, 48, 3668-3674

https://doi.org/10.1016/j.corsci.2006.02.003

Silverman, D., Kalota, D., Stover, F. (1995) Effect of pH on corrosion inhibition of steel by polyaspartic acid.Corrosion, 51: 818-825

https://doi.org/10.5006/1.3293559

Singh, A., Ansari, K., Chauhan, D., Quraishi, M., Kaya, S. (2020) Anti-corrosion investigation of pyrimidine derivatives as green and sustainable corrosion inhibitor for N80 steel in highly corrosive environment: Experimental and AFM/XPS study.Sustainable Chemistry and Pharmacy, 16: 100257-100257

https://doi.org/10.1016/j.scp.2020.100257

Singh, A., Ebenso, E. (2013) Use of glutamine as a new and effective corrosion inhibitor for mild steel in 1 M HCl solution.International Journal of Electrochemical Science, 8: 12874-12883

https://doi.org/10.1016/S1452-3981(23)13157-9

https://doi.org/10.1016/S1452-3981(23)12984-1

https://doi.org/10.1016/S1452-3981(23)13313-X

Singh, P., Bhrara, K., Singh, G. (2008) Adsorption and kinetic studies of ʟ-Leucine as an inhibitor on mild steel in acidic media.Applied Surface Science, 254, 5927-5935

https://doi.org/10.1016/j.apsusc.2008.03.154

Skoog, D., Holler, F., Crouch, S. (2007) Principles of instrumental analysis. Boston (MA): Cengage, 7th ed

Solmaz, R., Sahin, E., Döner, A., Kardas, G. (2011) The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution.Corrosion Science, 53, 3231-3240

https://doi.org/10.1016/j.corsci.2011.05.067

Solmaz, R. (2014) Investigation of corrosion inhibition mechanism and stability of Vitamin B1 on mild steel in 0.5 M HCl solution.Corrosion Science, 81, 75-84

https://doi.org/10.1016/j.corsci.2013.12.006

Solmaz, R., Kardaş, G., Yazıcı, B., Erbil, M. (2008) Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 312(1): 7-17

https://doi.org/10.1016/j.colsurfa.2007.06.035

Solmaz, R. (2010) Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid.Corrosion Science, 52(10), 3321-3330

https://doi.org/10.1016/j.corsci.2010.06.001

Stupnisek-Lisac, E., Loncaric, B.A., Cafuk, I. (1998) Low-toxicity copper corrosion inhibitors.Corrosion, 54 (9), 713-720

https://doi.org/10.5006/1.3284890

Sundaravadivelu, V.G.M. (2019) Non-toxic bisacodyl as an effective corrosion inhibitor for mild steel in 1 M HCl: Thermodynamic, electrochemical, SEM, EDX, AFM, FT-IR, DFT and molecular dynamics simulation studies.Journal of Molecular Liquids, 287, 110906

https://doi.org/10.1016/j.molliq.2019.110906

Taylor, C., Chandra, A., Vera, J., Sridhar, N. (2015) A multi-physics perspective on mechanistic models for chemical corrosion inhibitor performance.Journal of the Electrochemical Society, 162: 369-375

https://doi.org/10.1149/2.0801507jes

Telegdi, J., Shaban, A., Vastag, G. (2018) Biocorrosionsteel. in: Encyclopedia of interfacial chemistry, surface science and electrochemistry, 28 - 42

https://doi.org/10.1016/B978-0-12-409547-2.13591-7

Tkalenko, D.A., Venkatesvaran, G., Vishevskaya, Yu.P., Keny, S.J., Byk, M.V., Muthe, K. (2010) Inhibitory effect of cysteine in acid media.Protection of Metals and Physical Chemistry of Surfaces, 46(5): 609-614

https://doi.org/10.1134/S2070205110050199

Tribollet, O.M.B. (2017) Electrochemical impedance spectroscopy. Hoboken, NJ, USA: John Wiley & Sons

Udayappan, B., Veawab, A. (2022) Performance analysis of methionine as an environmentally friendly corrosion inhibitor for carbon steel in the amine based carbon capture process.International Journal of Greenhouse Gas Control, 114: 103565-103565

https://doi.org/10.1016/j.ijggc.2021.103565

Vaamonde, A., de Damborenea, J., González, J. (2000) Ciencia e ingeniería de la superficie de los materiales metalicos. CSIC-CSIC Press, Madrid, Spain

Venkatesha, R.S.T. (2002) New condensation products as corrosion inhibitors for mild steel in hydrochloric acid medium.Indian Journal of Engineering and Material Sciences, 9, 213-217

Verma, C, Ebenso, E., Quraishi M.(2017) Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview, Journal of Molecular Liquids, 233, 403 -414

https://doi.org/10.1016/j.molliq.2017.02.111

Downloads

Published

15-09-2022

Issue

Section

Articles