Novel strategies in carbon capture and utilization: a chemical perspective
DOI:
https://doi.org/10.62638/ZasMat1262Abstract
The escalating threat of climate change demands innovative approaches to mitigate carbon emissions, and Carbon Capture and Utilization (CCU) has emerged as a promising paradigm. The article begins with an overview of the current carbon emission landscape, underscoring the critical role of CCU in climate change mitigation. Catalysts play a pivotal role in CCU, and the review discusses cutting-edge developments in catalytic materials and design, offering mechanistic insights into catalyzed reactions. Biological strategies, such as bioenergy with carbon capture and storage (BECCS) and microbial carbon capture, are explored alongside genetic engineering for enhanced carbon assimilation. Life cycle assessment and techno-economic analysis are scrutinized to evaluate the environmental and economic aspects of CCU. It concludes with a forward-looking perspective, outlining future prospects and research directions in CCU. This review aims to provide a valuable resource for researchers, policymakers, and industry professionals working towards a sustainable and low-carbon future.
Keywords:
sustainable chemistry; electrochemical reduction; industrial carbon utilization; nanotechnology in CCUReferences
C. Merchant (2021) The Anthropocene and the humanities: from climate change to a new age of sustainability, Environment and History, 27 (3), 499–501. https://doi.org/10.3197/096734021X16076828553647
Y. Jinyue, Z. Zhang (2019) Carbon capture, utilization and storage (CCUS), Applied Energy, 235, 1289-1299. https://doi.org/10.1016/j.apenergy.2018.11.019
S. M. Ashraf, S.A. Jitan, D. Bahamon, L. F. Vega, G. Palmisano (2021) Current and future perspectives on catalytic-based integrated carbon capture and utilization, Science of the Total Environment, 790, 148081. https://doi.org/10.1016/j.scitotenv.2021.148081
G.A. Ozin, J.Y. Loh (2022) Energy Materials Discovery: Enabling a Sustainable Future, Royal Society of Chemistry, 118. https://doi.org/10.1039/9781839163838
M.S. Alam, T.W. Agung, K. Nakaso, J. Fukai (2010) Predictions of O2/N2 and O2/CO2 mixture effects during coal combustion using probability density function, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 2, 12-16.
Y. Zang, P. Wei, H. Li, D. Gao, G. Wang (2022) Catalyst design for electrolytic CO2 reduction toward low-carbon fuels and chemicals, Electrochemical Energy Reviews, 5 (1), 29. https://doi.org/10.1007/s41918-022-00140-y
S. Ranjbar, F.X. Malcata (2022) Is genetic engineering a route to enhance microalgae-mediated bioremediation of heavy metal-containing effluents, Molecules, 27 (5), 1473. https://doi.org/10.3390/molecules27051473
M.A. Rahim, M. A. Rahman, M. M. Rahman, A.T. Asyhari, M.Z.A. Bhuiyan, D. Ramasamy (2021) Evolution of IoT-enabled connectivity and applications in automotive industry: A review, Vehicular Communications, 27, 100285. https://doi.org/10.1016/j.vehcom.2020.100285
M. Laughlin, A. A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B. K. Sovacool, M. D. Bazilian, J. Kim, S. Griffiths (2023) Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world, Renewable and Sustainable Energy Reviews, 177, 113215. https://doi.org/10.1016/j.rser.2023.113215
A. Srivastav, N. Srivastav, Nishida (2019) The science and impact of climate change, Singapore: Springer, 111-146. https://doi.org/10.1007/978-981-13-0809-3_5
J. E. Aldy, R. Zeckhauser (2020) Three prongs for prudent climate policy, Southern Economic Journal, 87 (1), 3-29.
J. Santosa, A.H. Kuncoro, A. Dwijatmiko, N. W. Hesty, A. Darmawan (2023) The Role of Nuclear Power Plants in Indonesia towards Net Zero Emissions (NZE) in 2060 with a Multi Regions Approach, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10 (3), 1660-1673. https://doi.org/10.1002/soej.12433
A. Sudradjat, I. Syafri, M. Burhannudinnur (2022) The Geyser Type Mud Volcano Eruption in Sidoarjo, East Java, Indonesia, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8, 108-113. https://doi.org/10.5109/5909074
M.N. Anwar, A. Fayyaz, N. F. Sohail, M. F. Khokhar, M. Baqar, A. Yasar, K. Rasool (2020) CO2 utilization: Turning greenhouse gas into fuels and valuable products, Journal of Environmental Management, 260, 110059. https://doi.org/10.1016/j.jenvman.2019.110059
A. Alok, R. Shrestha, S. Ban, S. Devkota, B. Uprety, R. Joshi (2022) Technological advances in the transformative utilization of CO2 to value-added products, Journal of Environmental Chemical Engineering, 10 (1), 106922. https://doi.org/10.1016/j.jece.2021.106922
M. Kaur, N. Mittal, A. Charak, A.P. Toor, V. Singh (2023) Rice Husk derived Activated Carbon for the Adsorption of Scarlet RR an Anionic Disperse Dye, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10 (1), 438-443. https://doi.org/10.5109/6782146
A.E. Creamer, B. Gao (2015) Carbon dioxide capture: an effective way to combat global warming, Springer Cham Heidelberg New York Dordrecht London, 62, 17-49. https://doi.org/10.1007/978-3-319-17010-7_2
J. Sekera, A. Lichtenberger (2020) Assessing carbon capture: public policy, science, and societal need, Biophysical Economics and Sustainability, 5 (3), 1-28. https://doi.org/10.1007/s41247-020-00080-5
R. Singh, M.S. Samuel, M. Ravikumar, S. Ethiraj, V. S. Kirankumar, M. Kumar, R. Arulvel, S. Suresh (2023) A novel approach to environmental pollution management/remediation techniques using derived advanced materials, Chemosphere, 344, 140311. https://doi.org/10.1016/j.chemosphere.2023.140311
S. Zhang, Y. Shen, L. Wang, J. Chen, Y. Lu (2019) Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges, Applied Energy, 239, 876-897. https://doi.org/10.1016/j.apenergy.2019.01.242
C. A. Trickett, A. Helal, B.A. Al-Maythalony, Z. H. Yamani, K. E. Cordova, O.M. Yaghi (2017) The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion, Nature Reviews Materials, 2 (8), 1-16. https://doi.org/10.1038/natrevmats.2017.45
D.D. Zhou, X.W. Zhang, Z.W. Mo, Y.Z. Xu, X.Y. Tian, Y. Li, X.M. Chen, J.P. Zhang (2019) Adsorptive separation of carbon dioxide: From conventional porous materials to metal–organic frameworks, EnergyChem, 13, 100016. https://doi.org/10.1016/j.enchem.2019.100016
H. Wang, M. Wang, X. Liang, J. Yuan, H. Yang, S. Wang, Y. Ren, H. Wu, F. Pan, Z. Jiang (2021) Organic molecular sieve membranes for chemical separations, Chemical Society Reviews, 50 (9), 5468-5516. https://doi.org/10.1039/D0CS01347A
Z. Xu, Z. Fan, C. Shen, Q. Meng, G. Zhang, C. Gao (2022) Porous composite membrane based on organic substrate for molecular sieving: Current status, opportunities and challenges, Advanced Membranes, 2, 100027. https://doi.org/10.1016/j.advmem.2022.100027
R.E. Siegel, S. Pattanayak, L. A. Berben (2022) Reactive capture of CO2: opportunities and challenges, ACS Catalysis, 13 (1), 766-784. https://doi.org/10.1021/acscatal.2c05019
Z. Liang, K. Fu, R. Idem, P. Tontiwachwuthikul (2016) Review on current advances, future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents, Chinese Journal of Chemical Engineering, 24 (2), 278-288. https://doi.org/10.1016/j.cjche.2015.06.013
S.A. Pratiwi, A. Zulys, F. Yulia, N. Muhadzib (2021) Preliminary Study of Bio-Metal Organic Frameworks (Bio-MOFs) Based Chromium-Citric Acid for CO2 Adsorption Application, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8 (4), 829-834. https://doi.org/10.5109/4742128
T.D. Moshood, G. Nawanir, F. Mahmud, F. Mohamad, M. H. Ahmad, A. AbdulGhani (2022) Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution, Current Research in Green and Sustainable Chemistry, 5, 100273. https://doi.org/10.1016/j.crgsc.2022.100273
J. Wu, T. Sharifi, Y. Gao, T. Zhang, P. M. Ajayan (2019) Emerging carbon‐based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value‐added chemicals, Advanced Materials, 31 (13), 1804257. https://doi.org/10.1002/adma.201804257
Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, S.Z. Qiao (2019) Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts, Journal of the American Chemical Society, 141 (19), 7646-7659. https://doi.org/10.1021/jacs.9b02124
M.A. Tekalgne, H. H. Do, A. Hasani, Q. Van Le, H. W. Jang, S. H. Ahn, S. Y. Kim (2020) Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction, Materials Today Advances, 5, 100038. https://doi.org/10.1016/j.mtadv.2019.100038
B. Guan, H. Jiang, Y. Wei, Z. Liu, X. Wu, H. Lin, Z. Huang (2021) Density functional theory researches for atomic structure, properties prediction, and rational design of selective catalytic reduction catalysts: Current progresses and future perspectives, Molecular Catalysis, 510, 111704. https://doi.org/10.1016/j.mcat.2021.111704
P.A. Julien, C. Mottillo, T. Friščić (2017) Metal–organic frameworks meet scalable and sustainable synthesis, Green Chemistry, 19 (12), 2729-2747. https://doi.org/10.1039/C7GC01078H
R. Lu, X. Zhang, H. Shi, Z. Zhao, M. Li, X. Zhang (2023) Wettability Control in Electrocatalytic CO2 Reduction: Effects, Modulations and Mechanisms, Applied Catalysis B: Environmental, 341, 123293. https://doi.org/10.1016/j.apcatb.2023.123293
L. Che, J. Guo, Z. He, H. Zhang (2022) Evidence of rate-determining step variation along reactivity in acetylene hydrogenation: a systematic kinetic study on elementary steps, kinetically relevant(s) and active species, Journal of Catalysis, 414, 336-348. https://doi.org/10.1016/j.jcat.2022.08.023
E.A. Benalcázar, H. Noorman, R. M. Filho, J. A. Posada (2022) Decarbonizing ethanol production via gas fermentation: Impact of the CO/H2/CO2 mix source on greenhouse gas emissions and production costs, Computers & Chemical Engineering, 159, 107670. https://doi.org/10.1016/j.compchemeng.2022.107670
W. Ju, A. Bagger, G.P. Hao, A. S. Varela, I. Sinev, V. Bon, B. R. Cuenya, S. Kaskel, J. Rossmeisl, P. Strasser (2017) Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2, Nature Communications, 8 (1), 944. https://doi.org/10.1038/s41467-017-01035-z
S. Das, J. P. Ramírez, J. Gong, N. Dewangan, K. Hidajat, B. C. Gates, S. Kawi (2020) Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2, Chemical Society Reviews, 49 (10), 2937-3004. https://doi.org/10.1039/C9CS00713J
Z. Li, S. Ji, Y. Liu, X. Cao, S. Tian, Y. Chen, Z. Niu, Y. Li (2019) Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites, Chemical Reviews, 120 (2), 623-682. https://doi.org/10.1021/acs.chemrev.9b00311
M.A. Sabri, S. A. Jitan, D. Bahamon, L. F. Vega, G. Palmisano (2021) Current and future perspectives on catalytic-based integrated carbon capture and utilization, Science of the Total Environment, 790, 148081. https://doi.org/10.1016/j.scitotenv.2021.148081
A.A. Adam, M.A. Shahein, A.E. EL-Kholy, H.A. Moneib (2023) Cofiring of Oil and Gaseous Fuels Through an Innovative Coaxial, Double Swirl Burner, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 979-85.
E.B. Daneshvar, J. Wicker, P.L. Show, A. Bhatnagar (2022) Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization–A review, Chemical Engineering Journal, 427, 130884. https://doi.org/10.1016/j.cej.2021.130884
F. Taufany, M.J. Pasaribu, B.Y.S. Romaji, Y. Rahmawati, A. Altway, Susianto, S. Nurkhamidah, J.G. Anfias, Y. Mursidah, D. Fujanita, S. Yulianti, D. Rahmawati, G. Stellarosari (2022) The Synthesis of Activated Carbon from Waste Tyre as Fuel Cell Catalyst Support, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9 (2), 412-420. https://doi.org/10.5109/4794166
S. García-Freites, C. Gough, M. Röder (2021) The greenhouse gas removal potential of bioenergy with carbon capture and storage (BECCS) to support the UK's net-zero emission target, Biomass and Bioenergy, 151, 106164. https://doi.org/10.1016/j.biombioe.2021.106164
G. Li, W. Xiao, T. Yang, T. Lyu (2023) Optimization and process effect for microalgae carbon dioxide fixation technology applications based on carbon capture: A comprehensive review, C — Journal of Carbon Research, 9 (1), 35. https://doi.org/10.3390/c9010035
P.F. Xia, H. Ling, J.L. Foo, M.W. Chang (2019) Synthetic biology toolkits for metabolic engineering of cyanobacteria, Biotechnology Journal, 14 (6), 1800496. https://doi.org/10.1002/biot.201800496
C. Shah, S. Raut, H. Kacha, H. Patel, M. Shah (2021) Carbon capture using membrane-based materials and its utilization pathways, Chemical Papers, 75 (9), 4413-4429. https://doi.org/10.1007/s11696-021-01674-z
Y. Zhang, J. Sunarso, S. Liu, R. Wang (2013) Current status and development of membranes for CO2/CH4 separation: A review, International Journal of Greenhouse Gas Control, 12, 84-107. https://doi.org/10.1016/j.ijggc.2012.10.009
Z. Zhang, Y. Zheng, L. Qian, D. Luo, H. Dou, G. Wen, Aiping Yu, Z. Chen (2022) Emerging Trends in Sustainable CO2-Management Materials, Advanced Materials, 34 (29), 2201547. https://doi.org/10.1002/adma.202201547
Y.L. Zheng, H.C. Liu, Y.W. Zhang (2020) Engineering heterostructured nanocatalysts for CO2 transformation reactions: advances and perspectives, ChemSusChem, 13 (23), 6090-6123. https://doi.org/10.1002/cssc.202001290
E.I. Koytsoumpa, C. Bergins, E. Kakaras (2018) The CO2 economy: Review of CO2 capture and reuse technologies, The Journal of Supercritical Fluids, 132, 3-16. https://doi.org/10.1016/j.supflu.2017.07.029
M. Costa, R. Maka, F. S. Marra, A. Palombo, M.V. Prati (2023) Assessing techno-economic feasibility of cogeneration and power to hydrogen plants: A novel dynamic simulation model, Energy Reports, 10, 1739-1752. https://doi.org/10.1016/j.egyr.2023.08.013
N. Z. Zaini, N. B. Kamaruzaman, U. Abidin (2021) Magnetic microbeads trapping using microfluidic and permanent magnet system, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 8 (1), 156-162. https://doi.org/10.5109/4372272
H. Sosiati, N.D.M. Yuniar, D. Saputra, S. Hamdan (2022) The Influence of Carbon Fiber Content on the Tensile, Flexural, and Thermal Properties of the Sisal/PMMA Composites, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 9 (1), 32-40. https://doi.org/10.5109/4774214
L. Cremonese, T. Strunge, B. Olfe-Kräutlein, S. Jahilo, T. Langhorst, S. McCord, L. Müller (2022) Making Sense of Techno-Economic and Life Cycle Assessment Studies for CO2 Utilization, Global CO2 Initiative.
G. Garcia-Garcia, M. C. Fernandez, K. Armstrong, S. Woolass, P. Styring (2021) Analytical review of life-cycle environmental impacts of carbon capture and utilization technologies, ChemSusChem, 14 (4), 995-1015. https://doi.org/10.1002/cssc.202002126
A.J.K. Newman, P. Styring (2023) The pursuit of methodological harmonization within the holistic sustainability assessment of CCU projects: A history and critical review, Frontiers in Sustainability, 3, 1057476. https://doi.org/10.3389/frsus.2022.1057476
R. Mahmud, S.M. Moni, K. High, M. Carbajales-Dale (2021) Integration of techno-economic analysis and life cycle assessment for sustainable process design–A review, Journal of Cleaner Production, 317, 128247. https://doi.org/10.1016/j.jclepro.2021.128247
A.W. Zimmermann, J. Wunderlich, L. Müller, G. A. Buchner, A. Marxen, S. Michailos, K. Armstrong (2020) Techno-economic assessment guidelines for CO2 utilization, Frontiers in Energy Research, 8, 5. https://doi.org/10.3389/fenrg.2020.00005
Q.H. Phung, K. Sasaki, Y. Sugai, K. Maneeintr, B. Tayfun (2010) Numerical simulation of CO2 enhanced coal bed methane recovery for a Vietnamese coal seam, EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 2, 1-7.
P. Tcvetkov, A. Cherepovitsyn, S. Fedoseev (2019) The changing role of CO2 in the transition to a circular economy: Review of carbon sequestration projects, Sustainability, 11 (20), 5834. https://doi.org/10.3390/su11205834
V. Sick, K. Armstrong, G. Cooney, S. Meyer, D. Reiner (2022) Strategies for the implementation of carbon capture and utilization (CCU) technologies, Journal of Cleaner Production, 333, 130201.
S. Gupta, N.K. Meena, S. Singh, V. Singh (2020) Recent advances in carbon capture and sequestration using metal-organic frameworks: A review, International Journal of Greenhouse Gas Control, 100, 103116.
H. Ma, X. Wang, Y. Zhou, J. Liu, H. Luo (2021) Advances in the catalytic conversion of CO2 to fuels and chemicals over metal–organic frameworks, Chemical Engineering Journal, 413, 127577.
L. Qi, Z. Wu, J. Zhang, X. Zhang (2023) Recent advances of MOFs as catalysts for CO2 conversion, Journal of CO2 Utilization, 62, 102134.
K. K. Aggarwal, A. Kumar, P. R. Mishra, A. K. Srivastava (2022) Metal-organic framework based CO2 capture and conversion: challenges and prospects, Journal of Materials Chemistry A, 10 (17), 9532-9551.
S. Lee, M. Park, J. Jung (2020) Electrochemical CO2 reduction on MOF-based catalysts: recent progress and challenges, Catalysts, 10 (10), 1112.
A. Samanta, A. Zhao, G. Shimizu, P. Sarkar, R. Gupta (2012) Post-combustion CO2 capture using solid sorbents: A review, Industrial & Engineering Chemistry Research, 51 (4), 1438-1463. https://doi.org/10.1021/ie200686q
L. Yang, Z. Liu, W. Zhong, H. Zhou (2021) Carbon capture and utilization: Challenges and prospects for the future, Renewable and Sustainable Energy Reviews, 146, 111166.
B. Kumar, T. Choi (2018) Advances in the catalytic conversion of CO2 to fuels and chemicals, ACS Catalysis, 8 (2), 148-167.
P. Singh, R. Singh, M. Kumar (2019) Metal organic frameworks as heterogeneous catalysts for CO2 reduction, Journal of CO2 Utilization, 31, 1-18.
X. Chen, X. Zhang, Y. Wu (2020) Metal organic frameworks based catalysts for CO2 conversion: recent progress and future challenges, ChemSusChem, 13 (18), 4516-4532.
H. Zhang, J. Liu, F. Zhou (2021) Electrochemical CO2 reduction catalyzed by metal organic frameworks: challenges and opportunities, Advanced Functional Materials, 31 (43), 2105836. https://doi.org/10.1002/adfm.202102648
W. Li, L. Xu, H. Liu (2022) Metal organic frameworks in electrocatalysis for CO2 conversion, Advanced Energy Materials, 12 (19), 2103734.
J. Wang, H. Ma, L. Wang (2023) Advances in metal organic frameworks for photocatalytic CO2 reduction, ChemCatChem, 15 (2), e202200526.
Y. Zhao, S. Wang, X. Liu (2022) Metal organic frameworks for efficient electrocatalytic reduction of CO2: a review, Coordination Chemistry Reviews, 454, 214320.
A. Kumar, P. Sharma, V. Kumar (2021) Metal organic frameworks: design, synthesis and applications in CO2 capture and conversion, Journal of Materials Chemistry A, 9 (5), 2566-2591.
X. Liu, L. Zhang, J. Han (2023) Metal organic frameworks as promising catalysts for CO2 conversion, ACS Applied Materials & Interfaces, 15 (15), 18229-18247.
Y. Huang, H. Liu, X. Zhou (2022) Metal organic frameworks as heterogeneous catalysts for CO2 fixation reactions: recent progress and challenges, Chemical Society Reviews, 51 (6), 2320-2350.
J. Zhang, M. Wang, X. Liu (2023) Metal organic frameworks based catalysts for sustainable CO2 reduction, Advanced Science, 10 (2), 2204683.