Modelling the formation kinetics of Fe2B layers with a diffusionmodel using taylor expansion

Authors

  • Mourad Keddam Laboratoire de Technologie des Matériaux, Département de Sciences des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, USTHB, B.P N°32, 16111 El-Alia, Bab-Ezzouar, Alger, Algérie Author https://orcid.org/0000-0002-7721-5830
  • Zahra Nait Abdellah Département de Chimie, Faculté des Sciences, Université Mouloud Mammeri, 15000 Tizi-Ouzou, Algeria Author https://orcid.org/0009-0001-6367-1114

DOI:

https://doi.org/10.62638/ZasMat1252

Keywords:

BORIDING, iron boride, Diffusion model , Boron activation energy

Abstract

This work aimed to model the growth kinetics of Fe2B layers on the DIN 1.2738 steel by using a novel kinetic approach. The proposed model considered the transient diffusion regime of boron atoms through the surface of treated steel. The distribution of boron atoms across the Fe2B layer was expressed as a Taylor expansion of second order.

Afterward, the boron activation energy in the Fe2B layers was assessed as equal to 214.48 kJmol-1 in the temperature range 1123-1223 K using the experimental results taken from the literature. Finally, the present model has been validated experimentally by using additional boriding conditions (1198 K for 4.5 h). The experimental Fe2B layer thickness obtained at 1198 K for 4.5 h aligned with the predicted value provided by the model. Furthermore, the mass gain per unit area resulting from the formation of Fe2B layer was also calculated as a function of processing parameters.

References

M. Kulka (2019) Current Trends in Boriding Techniques, Springer, Cham, Switzerland.

https://doi.org/ 10.1007/978-3-030-06782-3

Y. Kayali , S.Taktak (2015) Characterization and Rockwell-C adhesion properties of chromium-based borided steels , Journal of Adhesion Science and Technology, 29, 2065- 2075. https://doi.org/10.1080/01694243.2015.1052617

E.A. Smol'nikov, L.M. Sarmanova (1982) Study of the possibility of liquid boriding of high-speed steels. Metal Science and Heat Treatment, 24, 785–788. https://doi.org/10.1007/BF00774735

I. Gunes, S. Ulker, S. Taktak (2013) Kinetics of plasma paste boronized AISI 8620 steel in borax paste mixtures, Protection of Metals and Physical Chemistry of Surfaces , 49, 567–573. https://doi.org/10.1134/S2070205113050122

L.S. Lyakhovich, F.V. Dolmanov, S.A. Isakov (1985) Boriding of steels in gaseous media. Metal Science and Heat Treatment, 24, 260–263. https://doi.org/10.1007/BF00772471

V. Jain , G Sundararajan (2002) Influence of the pack thickness of the boronizing mixture on the boriding of steel, Surface and Coatings Technology, 149, 21-26. https://doi.org/10.1016/S0257-8972(01)01385-8

I. Campos-Silva, M. Ortiz-Domínguez, H. Cimenoglu, R. Escobar-Galindo, M. Keddam, M. Elías-Espinosa, N. López-Perrusquia (2011) Diffusion model for growth of Fe2B layer in pure iron, Surface Engineering, 27, 189-195.

https://doi.org/10.1179/026708410X12550773057820.

Z. Nait Abdellah, M. Keddam, R. Chegroune, B. Bouarour, H. Lillia, A. Elias (2012) Simulation of the boriding kinetics of Fe2B layers on iron substrate by two approaches, Matériaux et Techniques, 100, 581-588. https://doi.org/10.1051/mattech/2012047.

M. Keddam, M. Kulka (2020) Mean Diffusion Coefficient Method in Studying Armco Iron Boriding Kinetics. Metal Science Heat Treatment, 62, 326–330. https://doi.org/10.1007/s11041-020-00562-9

J. Zuno-Silva, M. Ortiz-Domínguez, M. Keddam, M. Elias-Espinosa, O. Damián-Mejía, E. Cardoso-Legorreta , M. Abreu-Quijano (2015) Boriding kinetics of Fe2B layers formed on AISI 1045 steel, Journal of Mining and Metallurgy, Section B, 50, 101-107. https://doi.org/10.2298/JMMB140323019Z

Z. Nait Abdellah, M. Keddam , Peter Jurči (2021) Simulation of boronizing kinetics of ASTM A36 steel with the alternative kinetic model and the integral method, Koroze a Ochrana materialu, 65,33-39. https://doi.org/10.2478/kom-2021-0004

I. Campos-Silva, M.Flores-Jiménez, D.Bravo-Bárcenas, H.Balmori-Ramírez, J.Andraca-Adame, J.Martínez-Trinidad, J.A.Meda-Campaña (2017) Evolution of boride layers during a diffusion anne-aling process, Surface and Coatings Technology, 309,155-163. https://doi.org/10.1016/j.surfcoat.2016.11.054

l. Türkmen, E. Yalamaç (2018) Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method, Journal of Alloys and Compounds, 744, 658-666. https://doi.org/10.1016/j.jallcom.2018.02.118 .

Á. J. M. Robles, M. O. Domínguez, E. C. Legorreta, A. C. Avilés (2024) Influencia del potencial químico en el tratamiento de borurización en caja , Ingenio y Conciencia Boletín Científico de la Escuela Superior Ciudad Sahagún, 11, 28-52. https://doi.org/10.29057/escs.v11i22.12722.(In Spanish)

Y. El Guerri, B. Mebarek,M. Keddam (2024) Confrontation of linear versus nonlinear approach in Fe2B boride layer thickness predictions, Zastita Materijala, 65, 97 -109. https://doi.org/10.62638/ZasMat1016

C.M. Brakman, , A.W.J. Gommers, E.J. Mittemeijer (1989) Boriding of Fe and Fe–C, Fe–Cr, and Fe–Ni alloys; Boride-layer growth kinetics, Journal of Materials Research, 4, 1354–1370. https://doi.org/10.1557/JMR.1989.1354

R. Dadan Ramdan, T. Takaki, Y. Tomita (2008) Free Energy Problem for the simulations of the Growth of Fe2B Phase Using Phase-Field Method, Materials Transactions, 49, 2625-2631, https://doi.org/10.2320/matertrans.MRA2008158.

I. Campos, M. Islas, G. Ramírez, C. VillaVelázquez, C. Mota (2007) Growth kinetics of borided layers: Artificial neural network and least square approaches, Applied Surface Science, 253, 6226-6231. https://doi.org/10.1016/j.apsusc.2007.01.070.

L.G. Yu, X.J. Chen, K.A. Khor, G. Sundararajan (2005) FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics, Acta Materialia, 53, 2361-2368. https://doi.org/10.1016/j.actamat.2005.01.043.

H. Okamoto (2004) B-Fe (boron-iron), Journal of Phase Equilibri and Diffusion, 25, 297–298. (2004). https://doi.org/10.1007/s11669-004-0128-3

I. Turkmen (2023) Borlanmış DIN 1.2738 Kalıp Çeliğinin Yüzey Özelliklerinin ve Borlama Kinetiğinin İncelenmesi, AKU Journal of Science and Engineering, 23, 474-486. https://doi.org/10.35414/akufemubid1173661 (In Turkish)

S.İ.Ayvaz (2024) Growth Kinetics and Microstructure of Iron Boride Layers on AISI 1050 Steel, Metal Science and Heat Treatment, 65, 751–757. https://doi.org/10.1007/s11041-024-01001-9

A. Calik, N. Ucar, N. Yeniay (2022) A Study of Boronizing Kinetics and Its Effect on the Structure and Mechanical Properties of Steel 16MnCr5, Metal Science and Heat Treatment, 64, 63–68. https://doi.org/10.1007/s11041-022-00762-5

Y. Kayali, S. Talaş, M.C. Yalçin, M. Kul, M. Yazar, H. Kir (2022). Diffusion Kinetics of Boronized ASP®2012 Tool Steel Produced by Powder Metallurgy. Protection of Metals and Physical Chemistry of Surfaces, 58, 1036–1043. https://doi.org/10.1134/S2070205122050100

Y. Kayalı, R. Kara (2021) Investigation of Wear Behavior and Diffusion Kinetic Values of Boronized Hardox-450 Steel, Protection of Metals and Physical Chemistry of Surfaces, 57, 1025–1033.

https://doi.org/10.1134/S2070205121050129

T. Aydogmus, B. Çicek, P. Topuz, O. Aydin (2024) Growth kinetics of Fe2B layer formed on the surface of borided AISI M2 high-speed steel, Materials Testing, https://doi.org/10.1515/mt-2024-0160

Downloads

Published

14-11-2024

Issue

Section

Scientific paper