Metal Corrosion in High Temperature Conditions: A Review
DOI:
https://doi.org/10.62638/ZasMat1203Keywords:
high temperature corrosion, oxidation, protective coating, non protective coating, novel materials for extreme environmentsAbstract
This work reviewed previous studies relevant to the mechanisms of metal corrosion at extremely high temperatures, the combined effects of pressure and chemical species on corrosion processes, and the development of innovative materials and coatings designed to withstand these challenging conditions. The complex interactions between temperature, pressure, and chemical species were highlighted in the investigation as factors that accelerate corrosion rates of metals in various industrial environments. Data from numerous experimental studies and industrial applications were analyzed as part of a thorough literature review conducted for the research. Previous studies reported that corrosion mechanisms, including fluxing, hot corrosion, sulfidation, and corrosion fatigue, along with protective oxide scales, were found to be crucial in maintaining material integrity. New materials designed for extreme temperature resistance, such as high-entropy alloys, high-temperature metallic glasses, and oxide-dispersion-strengthened alloys, were reported to show superior strength, oxidation resistance, and creep performance, including protective coatings like vitreous ceramic-like enamels and phase composite ceramic thermal barriers. To improve the durability and performance of metals in extreme environments, the research highlighted the significance of material composition, coating microstructure, and application techniques in determining the effectiveness of corrosion protection methods. Based on these findings, the study recommended additional research into the development and optimization of advanced materials and coatings for specific high-temperature applications, as well as the integration of these solutions into industrial processes.
References
Elbakhshwan MS, Gill SK, Motta AT, Weidner R, Anderson T, Ecker LE. Sample environment for in situ synchrotron corrosion studies of materials in extreme environments. Review of Scientific Instruments 2016;87:105122. https://doi.org/10.1063/1.4964101.
Bonfanti A, Lecomte C, Little BJ, Lee JS. Bioactive Environments: Corrosion. Reference Module in Materials Science and Materials Engineering, Elsevier; 2018, p. B9780128035818028885. https://doi.org/10.1016/B978-0-12-803581-8.02888-5.
Ogundare O, Babatope B, Adetunji AR, Olusunle SOO. Atmospheric Corrosion Studies of Ductile Iron and Austenitic Stainless Steel in an Extreme Marine Environment. JMMCE 2012;11:914–8. https://doi.org/10.4236/jmmce.2012.119088.
Young DJ. High temperature oxidation and corrosion of metals. Second edition. Amsterdam Oxford Cambridge: Elsevier; 2016.
Ndukwe AI, Anyakwo CN. Corrosion inhibition model for mild steel in sulphuric acid by crushed leaves of clerodendrum splendens (verbenaceae). International Journal of Scientific Engineering and Applied Science 2017;3:39–49.
Ndukwe AI. Corrosion inhibition of carbon steel by eucalyptus leaves in acidic media: An overview. Zastita Materijala 2024;65:11–21.
NDUKWE AI. GREEN INHIBITORS FOR CORROSION OF METALS IN ACIDIC MEDIA: A REVIEW. Academic Journal of Manufacturing Engineering 2022;20.
Anyakwo CN, Ndukwe AI. Mathematical model for corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of tridax procumbens (asteraceae). International Journal of Science and Engineering Investigations 2017;6:81–9.
Ndukwe AI, Anyakwo CN. Modelling of corrosion inhibition of mild steel in hydrochloric acid by crushed leaves of Sida acuta (Malvaceae). Int J Eng Sci 2017;6:22–33.
Ndukwe AI, Anyakwo CN. Modelling of corrosion inhibition of mild steel in sulphuric acid by thoroughly crushed leaves of voacanga Africana (apocynaceae). AJER 2017;6:344–56.
Ndukwe AI, Okolo CD, Nwadirichi BU. Overview of corrosion behaviour of ceramic materials in molten salt environments. Zas Mat 2024;65:202–12. https://doi.org/10.62638/ZasMat1128.
Ndukwe AI, Anyakwo CN. Predictive Corrosion-Inhibition Model for Mild Steel in Sulphuric Acid (H 2 SO 4) by Leaf-Pastes of Sida Acuta Plant. Journal of Civil, Construction and Environmental Engineering 2017;2:123–33.
Ndukwe AI, Anyakwo CN. Predictive model for corrosion inhibition of mild steel in HCl by crushed leaves of clerodendrum splendens. IRJET 2017;4:679–88.
Anyakwo CN, Ndukwe AI. Prognostic model for corrosion-inhibition of mild steel in hydrochloric acid by crushed leaves of voacanga Africana. International Journal of Computational and Theoretical Chemistry 2017;2:31–42.
Ndukwe A, Etim D, Uchenna A, Chibuike O, Okon K, Agu P. The inhibition of mild steel corrosion by papaya and neem extracts. Zaštita Materijala 2023;64:274–82. https://doi.org/10.5937/zasmat2303274N.
Ndukwe AI, Anaele JU. CORROSION OF DUPLEX STAINLESS-STEEL WELDMENTS: A REVIEW OF RECENT DEVELOPMENTS KOROZIJA DUPLEKS NERDJAJUĆIH ČELIKA: PREGLED SKORIH ISTRAŽIVANJA n.d.
Inya NA, Etim DN, Uchenna AJ, Chukwudi AP. Recent findings on corrosion of ferritic stainless steel weldments: A review. Materials Protection 2023;64:372–82.
Cockings H. High Temperature Corrosion. Encyclopedia of Materials: Metals and Alloys, Elsevier; 2022, p. 464–75. https://doi.org/10.1016/B978-0-12-819726-4.00064-8.
Laureys A, Wallaert E, Claeys L, Pinson M, Depover T, Verbeken K. Corrosion of austenitic stainless steels and nickel-based alloys in concentrated phosphoric acid at elevated temperatures. Procedia Structural Integrity 2022;42:1458–66. https://doi.org/10.1016/j.prostr.2022.12.186.
Pedeferri P. High Temperature Corrosion. Corrosion Science and Engineering, Cham: Springer International Publishing; 2018, p. 589–610. https://doi.org/10.1007/978-3-319-97625-9_26.
Loto RT, Loto CA, Olaitan A, Joseph O. Effect of Heat Treatment on the Localized Corrosion Resistance of S32101 Duplex Stainless Steel in Chloride/Sulphate Media. In: The Minerals, Metals & Materials Series, editor. TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, Cham: Springer International Publishing; 2019, p. 959–66. https://doi.org/10.1007/978-3-030-05861-6_94.
Soltanattar S. High Temperature Corrosion Behavior of Alloys in Mixed-Gas Environments 2018. https://d-scholarship.pitt.edu/33842/ (accessed May 19, 2024).
Wang Y, Goh B, Nelaturu P, Duong T, Hassan N, David R, et al. Integrated High-Throughput and Machine Learning Methods to Accelerate Discovery of Molten Salt Corrosion-Resistant Alloys. Advanced Science 2022;9:2200370. https://doi.org/10.1002/advs.202200370.
Subramani P, Arivazhagan N, Selvaraj SK, Mancin S, Manikandan M. Influence of hot corrosion on pulsed current gas tungsten arc weldment of aerospace-grade 80A alloy exposed to high temperature aggressive environment. International Journal of Thermofluids 2022;14:100148. https://doi.org/10.1016/j.ijft.2022.100148.
Gervasio DF, Elsentriecy HH. ELECTROCHEMICAL DETECTION OF CORROSION AND CORROSION RATES OF METAL IN MOLTEN SALTS AT HIGH TEMPERATURES - UNIV ARIZONA n.d. https://www.sumobrain.com/patents/wipo/Electrochemical-detection-corrosion-rates-metal/WO2018048461A1.html (accessed May 19, 2024).
Giorgio C, Renato P, Lenzi A, bruno tarquini. CORROSION RATES IN THE DEW-POINT ZONE OF SUPERHEATED STEAM, 2000.
Lang E, Madden N, Schoell R, Clark T, Adams DP, Hattar K. Structure and Phase Stability in Extreme Environments Explored via In-situ TEM Experiments. Microscopy and Microanalysis 2022;28:1848–50. https://doi.org/10.1017/S1431927622007267.
Sun Z, Guo X, Zhao Z, Ni Y, He G. Research Progress of Extreme Low Temperature Reliability of Typical Electronic Interconnection Structures. 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China: IEEE; 2021, p. 1–5. https://doi.org/10.1109/ICEPT52650.2021.9568187.
Dey S, Chatterjee S, Singh BP, Bhattacharjee S, Rout TK, Sengupta DK, et al. Development of superhydrophobic corrosion resistance coating on mild steel by electrophoretic deposition. Surface and Coatings Technology 2018;341:24–30. https://doi.org/10.1016/j.surfcoat.2018.01.005.
Pillai R, Chyrkin A, Quadakkers WJ. Modeling in High Temperature Corrosion: A Review and Outlook. Oxid Met 2021;96:385–436. https://doi.org/10.1007/s11085-021-10033-y.
Ma X, Rivellini K, Ruggiero P, Wildridge G. Novel Thermal Barrier Coatings with Phase Composite Structures for Extreme Environment Applications: Concept, Process, Evaluation and Performance. Coatings 2023;13:210. https://doi.org/10.3390/coatings13010210.
Devarajan DK, Rangasamy B, Amirtharaj Mosas KK. State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications. Ceramics 2023;6:301–29. https://doi.org/10.3390/ceramics6010019.
Chen L, Zou C, Zang M, Chen S. Single-Impact Failure of Multi-Layered Automotive Coatings: A Finite Element-Based Study. Coatings 2023;13:309. https://doi.org/10.3390/coatings13020309.
Das S, Mukherjee S, Jain A. Ceramic coated surface for corrosion and wear resistance. Advanced Ceramic Coatings, Elsevier; 2023, p. 269–315. https://doi.org/10.1016/B978-0-323-99659-4.00015-2.
Guo L, Wang Y, Liu B, Zhang Y, Tang Y, Li H, et al. In-situ phase evolution of multi-component boride to high-entropy ceramic upon ultra-high temperature ablation. Journal of the European Ceramic Society 2023;43:1322–33. https://doi.org/10.1016/j.jeurceramsoc.2022.11.019.
Xu Y, Bredberg NL, Ballou JS, Wang J, Kim L. Corrosion resistance environment durable SWIR-MWIR AR coatings. In: Marasco PL, Sanghera JS, Vizgaitis JN, editors. Advanced Optics for Imaging Applications: UV through LWIR VIII, Orlando, United States: SPIE; 2023, p. 12. https://doi.org/10.1117/12.2663354.
Bhaskaran Nair R, Supekar R, Morteza Javid S, Wang W, Zou Y, McDonald A, et al. High-Entropy Alloy Coatings Deposited by Thermal Spraying: A Review of Strengthening Mechanisms, Performance Assessments and Perspectives on Future Applications. Metals 2023;13:579. https://doi.org/10.3390/met13030579.
Zhang H, Liu S, Liang P, Ye Z, Li Y. An Accelerated-Based Evaluation Method for Corrosion Lifetime of Materials Considering High-Temperature Oxidation Corrosion. Sustainability 2023;15:9102. https://doi.org/10.3390/su15119102.
Gaiser G, Presoly P, Bernhard C. High-Temperature Oxidation of Steel under Linear Flow Rates of Air and Water Vapor—An Experimental Determined Set of Data. Metals 2023;13:892. https://doi.org/10.3390/met13050892.
Samal S. Oxidation of Metal. Encyclopedia of Materials: Metals and Alloys, Elsevier; 2022, p. 442–53. https://doi.org/10.1016/B978-0-12-803581-8.12068-5.
Zhao Y, Sun F, Jiang P, Sun Y. Effects of Roughness on Stresses in an Oxide Scale Formed on a Superalloy Substrate. Coatings 2021;11:479. https://doi.org/10.3390/coatings11040479.
Xia ZX, Zhang C, Huang XF, Liu WB, Yang ZG. Improve oxidation resistance at high temperature by nanocrystalline surface layer. Sci Rep 2015;5:13027. https://doi.org/10.1038/srep13027.
Liu W, Sun X, Stephens E, Khaleel M. Interfacial Shear Strength of Oxide Scale and SS 441 Substrate. Metall Mater Trans A 2011;42:1222–8. https://doi.org/10.1007/s11661-010-0537-3.
Young DJ. Oxidation of Alloys I. High Temperature Oxidation and Corrosion of Metals, Elsevier; 2016, p. 193–260. https://doi.org/10.1016/B978-0-08-100101-1.00005-4.
Sun B, Cheng L, Du C-Y, Zhang J-K, He Y-Q, Cao G-M. Effect of Oxide Scale Microstructure on Atmospheric Corrosion Behavior of Hot Rolled Steel Strip. Coatings 2021;11:517. https://doi.org/10.3390/coatings11050517.
Garza-Montes-de-Oca NF, Ramírez-Ramírez JH, Alvarez-Elcoro I, Rainforth WM, Colás R. Oxide Structures Formed During the High Temperature Oxidation of Hot Mill Work Rolls. Oxid Met 2013;80:191–203. https://doi.org/10.1007/s11085-013-9404-0.
Simon D, Gorr B, Christ HJ. Effect of Atmosphere and Sample Thickness on Kinetics, Microstructure, and Compressive Stresses of Chromia Scale Grown on Ni–25Cr. Oxid Met 2017;87:417–29. https://doi.org/10.1007/s11085-016-9702-4.
Lee J, Park S. Systematic determination of the thickness of a thin oxide layer on a multilayered structure by using an X-ray reflectivity analysis. Journal of the Korean Physical Society 2016;69:789–92. https://doi.org/10.3938/jkps.69.789.
Kuhl M, Henning A, Haller L, Wagner L, Jiang C-M, Streibel V, et al. Designing multifunctional CoOx layers for efficient and stable electrochemical energy conversion 2022. https://doi.org/10.26434/chemrxiv-2022-23ck4.
De Clermont Gallerande E, Cabaret D, Radtke G, Sahle ChJ, Ablett JM, Rueff J-P, et al. Quantification of non-bridging oxygens in silicates using X-ray Raman scattering. Journal of Non-Crystalline Solids 2020;528:119715. https://doi.org/10.1016/j.jnoncrysol.2019.119715.
Stilhano Vilas Boas CR, Sturm JM, Bijkerk F. Oxidation of metal thin films by atomic oxygen: A low energy ion scattering study. Journal of Applied Physics 2019;126:155301. https://doi.org/10.1063/1.5115112.
Huneycutt R. Feasibility of Using Oxide Thickness Measurements for Predicting Crack Growth Rates in P91 Steel Components. Graduate Theses and Dissertations 2017.
Niranatlumpong P, Ponton CB, Evans HE. The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings. Oxidation of Metals 2000;53:241–58. https://doi.org/10.1023/A:1004549219013.
Zhang Z, Fu X, Mao M, Yu Q, Mao SX, Li J, et al. In situ observation of sublimation-enhanced magnesium oxidation at elevated temperature. Nano Res 2016;9:2796–802. https://doi.org/10.1007/s12274-016-1168-9.
Zhou J, Taylor M, Melinte GA, Shahani AJ, Dharmawardhana CC, Heinz H, et al. Quantitative characterization of high temperature oxidation using electron tomography and energy-dispersive X-ray spectroscopy. Sci Rep 2018;8:10239. https://doi.org/10.1038/s41598-018-28348-3.
Jiang Q, Lu D, Liu C, Liu N, Hou B. The Pilling-Bedworth Ratio of Oxides Formed From the Precipitated Phases in Magnesium Alloys. Front Mater 2021;8:761052. https://doi.org/10.3389/fmats.2021.761052.
Coker EN, Donaldson B, Gill W, Yilmaz N, Vigil FM. The Isothermal Oxidation of High-Purity Aluminum at High Temperature. Applied Sciences 2022;13:229. https://doi.org/10.3390/app13010229.
Taghipour M, Eslami A, Bahrami A. High temperature oxidation behavior of aluminide coatings applied on HP-MA heat resistant steel using a gas-phase aluminizing process. Surface and Coatings Technology 2022;434:128181. https://doi.org/10.1016/j.surfcoat.2022.128181.
Pontika E, Laskaridis P, Nikolaidis T, Koster M. Hot Corrosion Damage Modelling in Aero Engines based on Performance and Flight Mission Analysis. AIAA SCITECH 2023 Forum, National Harbor, MD & Online: American Institute of Aeronautics and Astronautics; 2023. https://doi.org/10.2514/6.2023-0705.
Fontana MG. Corrosion engineering. 3. ed., international ed. New York: McGraw-Hill; 1987.
Wang J, Li D, Shao T. Hot corrosion and electrochemical behavior of NiCrAlY, NiCoCrAlY and NiCoCrAlYTa coatings in molten NaCl-Na2SO4 at 800 °C. Surface and Coatings Technology 2022;440:128503. https://doi.org/10.1016/j.surfcoat.2022.128503.
Zhang M, Feng Y, Wang Y, Niu Y, Xin L, Li Y, et al. Corrosion Behaviors of Nitride Coatings on Titanium Alloy in NaCl-Induced Hot Corrosion. Acta Metall Sin (Engl Lett) 2021;34:1434–46. https://doi.org/10.1007/s40195-021-01264-8.
De La Roche J, Alvarado-Orozco JM, Gómez PA, Cano IG, Dosta S, Toro A. Hot corrosion behavior of dense CYSZ/YSZ bilayer coatings deposited by atmospheric plasma spray in Na2SO4 + V2O5 molten salts. Surface and Coatings Technology 2022;432:128066. https://doi.org/10.1016/j.surfcoat.2021.128066.
Akhdhar A, El-Hady DA, Almutairi M, Alnabati KK, Alowaifeer A, Alhayyani S, et al. Rapid release of heavy metals and anions from polyethylene laminated paper cups into hot water. Environ Chem Lett 2022;20:35–40. https://doi.org/10.1007/s10311-021-01315-7.
Lohmeier L, Wollenberg R, Schröder H-W. Investigation into the Hot Briquetting of Fine‐Grained Residual Materials from Iron and Steel Production. Steel Research Int 2020;91:2000237. https://doi.org/10.1002/srin.202000237.
Durinck D, Engström F, Arnout S, Heulens J, Jones PT, Björkman B, et al. Hot stage processing of metallurgical slags. Resources, Conservation and Recycling 2008;52:1121–31. https://doi.org/10.1016/j.resconrec.2008.07.001.
Ryu C, Ismail MHS, Sharifi VN, Swithenbank J. Liquid Tin Irrigated Packed Bed for Hot Fuel Gas Desulfurization. Ind Eng Chem Res 2007;46:9015–21. https://doi.org/10.1021/ie0704804.
Jin Y, Chen S, Wu X, Guo J, Zhang L. Comparative Study of Prior Particle Boundaries and Their Influence on Grain Growth during Solution Treatment in a Novel Nickel-Based Powder Metallurgy Superalloy with/without Hot Extrusion. Metals 2022;13:17. https://doi.org/10.3390/met13010017.
Lu Z, Zhang C, Deng N, Zhou H, Wang G, Su Y, et al. Evolution of grain boundary character distribution in near-surface regions of a cold-rolled nickel-based superalloy during induction heating process. Journal of Materials Research and Technology 2021;15:801–9. https://doi.org/10.1016/j.jmrt.2021.08.086.
Bache M, Ball C, Hardy M, Mignanelli P. Corrosion fatigue and damage tolerance in the nickel‐based superalloy RR1000 subjected to SO 2 environments. Fatigue Fract Eng Mat Struct 2022;45:1537–49. https://doi.org/10.1111/ffe.13687.
Savaedi Z, Mirzadeh H, Aghdam RM, Mahmudi R. Effect of grain size on the mechanical properties and bio-corrosion resistance of pure magnesium. Journal of Materials Research and Technology 2022;19:3100–9. https://doi.org/10.1016/j.jmrt.2022.06.048.
Kar S, Yilmaz A, Traka K, Sietsma J, Gonzalez-Garcia Y. Role of Grain Size and Recrystallization Texture in the Corrosion Behavior of Pure Iron in Acidic Medium. Metals 2023;13:388. https://doi.org/10.3390/met13020388.
Popov BN. Electrochemical Kinetics of Corrosion. Corrosion Engineering, Elsevier; 2015, p. 93–142. https://doi.org/10.1016/B978-0-444-62722-3.00003-3.
Zhang W-J, Sharghi-Moshtaghin R. Revisit the Type II Corrosion Mechanism. Metall Mater Trans A 2018;49:4362–72. https://doi.org/10.1007/s11661-018-4755-4.
Zhang W-J, Sharghi-Moshtaghin R. Understanding the Type II Corrosion Mechanism. Metall Mater Trans A 2021;52:1492–502. https://doi.org/10.1007/s11661-021-06168-x.
Liu DL, Tian GF, Chen Y, Yang WH, Mu RD. Hot Corrosion Behavior of a New Powder Metallurgy Superalloy in Molten Na2SO4-NaСl Salts. MSF 2022;1072:57–65. https://doi.org/10.4028/p-28w55f.
Sahu SK, Sreekanth PSR. Artificial Neural Network for Prediction of Mechanical Properties of HDPE Based Nanodiamond Nanocomposite. Pk 2022;46:614–20. https://doi.org/10.7317/pk.2022.46.5.614.
Fritsch M, Klemm H, Herrmann M, Schenk B. Corrosion of selected ceramic materials in hot gas environment. Journal of the European Ceramic Society 2006;26:3557–65. https://doi.org/10.1016/j.jeurceramsoc.2006.01.015.
Singh H, Singh S, Goyal K. HOT CORROSION BEHAVIOR OF HVOF COATED T11 STEEL IN HIGH TEMPERATURE ENVIRONMENT. Journal of Emerging Technologies and Innovative Research 2019.
Kamachi Mudali U. Materials for Hostile Corrosive Environments. Materials Under Extreme Conditions, Elsevier; 2017, p. 91–128. https://doi.org/10.1016/B978-0-12-801300-7.00003-6.
Česánek Z, Lencová K, Schubert J, Antoš J, Mušálek R, Lukáč F, et al. High-Temperature Corrosion Behavior of Selected HVOF-Sprayed Super-Alloy Based Coatings in Aggressive Environment at 800 °C. Materials (Basel) 2023;16:4492. https://doi.org/10.3390/ma16124492.
Galakhova A, Kadisch F, Mori G, Heyder S, Wieser H, Sartory B, et al. Corrosion of Stainless Steel by Urea at High Temperature. CMD 2021;2:461–73. https://doi.org/10.3390/cmd2030024.
Hu Z, Liu L, Lu P, Liu W, Zhang F, Tang Z. Corrosion behavior and mechanism of 316 stainless steel in NaCl-KCl-ZnCl2 molten salts at high temperature. Materials Today Communications 2022;31:103297. https://doi.org/10.1016/j.mtcomm.2022.103297.
Chen W, Huang L, Liu Y, Zhao Y, Wang Z, Xie Z. Oxidative Corrosion Mechanism of Ti2AlNb-Based Alloys during Alternate High Temperature-Salt Spray Exposure. Coatings 2022;12:1374. https://doi.org/10.3390/coatings12101374.
Pidcock A, Mori S, Sumner J, Simms N, Nicholls J, Oakey J. High Temperature Corrosion of HVOF Coatings in Laboratory-Simulated Biomass Combustion Superheater Environments. High Temperature Corrosion of Mater 2023;99:101–15. https://doi.org/10.1007/s11085-022-10141-3.
Liu W, Cui T, Dong M, Yu M, Li J. Insights of NaCl water vapor coupling induced hot corrosion behaviors of IN718 superalloy. Materials & Corrosion 2023;74:209–20. https://doi.org/10.1002/maco.202213308.
Gui Y, Liang ZY, Yu M, Zhao QX. Corrosion Behavior and Mechanism of Heat-Resistant Steel T91 in High-Temperature Carbon Dioxide Environment. MSF 2019;944:398–403. https://doi.org/10.4028/www.scientific.net/MSF.944.398.
Varga M, Rojacz H, Widder L, Antonov M. High Temperature Erosion-Corrosion of Wear Protection Materials. J Bio Tribo Corros 2021;7:87. https://doi.org/10.1007/s40735-021-00504-9.
Ghaznavi T, Persaud SY, Newman RC. Electrochemical Corrosion Studies in Molten Chloride Salts. J Electrochem Soc 2022;169:061502. https://doi.org/10.1149/1945-7111/ac735b.
Alcántara-Cárdenas JA, Ramirez-Lopez A, Chávez-Alcalá JF, Sanchez-Pastén M. Evaluation of High Temperature Corrosion in Simulated Waste Incinerator Environments. Oxid Met 2016;85:611–27. https://doi.org/10.1007/s11085-016-9615-2.
Xu Y, Yuan S. Corrosion mechanism of anode steel claw in high temperature cryolite molten salt and corrosion resistance technology. Materials Research Innovations 2015;19:S260–3. https://doi.org/10.1179/1432891715Z.0000000001568.
Manikandan M, Arivarasu M, Arivazhagan N, Puneeth T, Sivakumar N, Arul Murugan B, et al. High Temperature Corrosion studies on Pulsed Current Gas Tungsten Arc Welded Alloy C-276 in Molten Salt Environment. IOP Conf Ser: Mater Sci Eng 2016;149:012020. https://doi.org/10.1088/1757-899X/149/1/012020.
Galetz MC, Rammer B, Schütze M. Refractory metals and nickel in high temperature chlorine‐containing environments ‐ thermodynamic prediction of volatile corrosion products and surface reaction mechanisms: a review. Materials & Corrosion 2015;66:1206–14. https://doi.org/10.1002/maco.201408130.
Sarkar D. Fundamental Design of Steelmaking Refractories. 1st ed. Wiley; 2023. https://doi.org/10.1002/9781119790860.
Darban S, Reynaert C, Ludwig M, Prorok R, Jastrzębska I, Szczerba J. Corrosion of Alumina-Spinel Refractory by Secondary Metallurgical Slag Using Coating Corrosion Test. Materials 2022;15:3425. https://doi.org/10.3390/ma15103425.
Ma J, Lu H, Wei Y, Wang C. Leaching of Metal Ions and Suspended Solids from Slag Corroded by Acid-base Solutions: An Experimental Study. Nat Env Poll Tech 2022;21:625–32. https://doi.org/10.46488/NEPT.2022.v21i02.021.
Vadász P, Plešingerová B, Bounziová J, Medved D, Grambálová E. Corrosion Profile on Boundary Solid Phase — Slag Melt. Interceram - Int Ceram Rev 2016;65:232–6. https://doi.org/10.1007/BF03401174.
Peng Y, Huang A, Li S, Chen X, Gu H. Radical reaction-induced Turing pattern corrosion of alumina refractory ceramics with CaO–Al2O3–SiO2–MgO slags. Journal of the European Ceramic Society 2023;43:166–72. https://doi.org/10.1016/j.jeurceramsoc.2022.09.044.
Larché N, Leballeur C, Le Manchet S, He W. Localized Corrosion of High-Grade Stainless Steels: Grade Selection in Chlorinated Seawater. Corrosion 2023;79:997–1005. https://doi.org/10.5006/4348.
Surya A, Prakash R, Senthil Kumar P, Bharath Balji G. Development of Alumina-Titania Composite Layers on Stainless Steel through the Detonation Spray Method and Investigation of Salt Spray Corrosion Behavior along with Surface Examination. International Journal of Chemical Engineering 2023;2023:1–11. https://doi.org/10.1155/2023/1445360.
Mobin, M. High Temperature Interactions of Metal Oxides and Carbides with Ionic Salts. Science and Engineering of Composite Materials 1999;8:257–74. https://doi.org/10.1515/SECM.1999.8.5.257.
Yang X, Chen W, Fu Z, Li S, Ling Z. Corrosion behavior of novel Fe–Cr–B alloys containing high Cr content in molten aluminum. Materials & Corrosion 2023;74:452–63. https://doi.org/10.1002/maco.202213298.
Cawley P, Phongikaroon S. Feasibility Study on Aluminum Under Laser Ablation for Corrosion Resistance in Molten Salt. Meet Abstr 2022;MA2022-02:755–755. https://doi.org/10.1149/MA2022-0212755mtgabs.
Balloy D, Tissier J-C, Giorgi M-L, Briant M. Corrosion Mechanisms of Steel and Cast Iron by Molten Aluminum. Metall Mater Trans A 2010;41:2366–76. https://doi.org/10.1007/s11661-010-0306-3.
Tobin JR, Nemickas R, Scanlon PJ, Moran JF, Johnson S, Gunnar RM. EKG of the month. IMJ Ill Med J 1975;148:525, 533.
Badet H, Poineau F. Corrosion studies of stainless steel 304 L in nitric acid in the presence of uranyl nitrate: effect of temperature and nitric acid concentration. SN Appl Sci 2020;2:459. https://doi.org/10.1007/s42452-020-2273-7.
Derelizade K, Rincon A, Venturi F, Wellman RG, Kholobystov A, Hussain T. High temperature (900 °C) sliding wear of CrNiAlCY coatings deposited by high velocity oxy fuel thermal spray. Surface and Coatings Technology 2022;432:128063. https://doi.org/10.1016/j.surfcoat.2021.128063.
Singh PK, Mishra SB. Studies on solid particle erosion behaviour of D-Gun sprayed WC-Co, Stellite 6 and Stellite 21 coatings on SAE213-T12 boiler steel at 400 °C temperature. Surface and Coatings Technology 2020;385:125353. https://doi.org/10.1016/j.surfcoat.2020.125353.
Liao K, Zhou F, Song X, Wang Y, Zhao S, Liang J, et al. Synergistic Effect of O2 and H2S on the Corrosion Behavior of N80 Steel in a Simulated High-Pressure Flue Gas Injection System. J of Materi Eng and Perform 2020;29:155–66. https://doi.org/10.1007/s11665-019-04512-2.
Daniel EF, Wang C, Li C, Dong J, Zhang D, Zhong W, et al. Synergistic effect of crevice corrosion and galvanic coupling on 304SS fasteners degradation in chloride environments. Npj Mater Degrad 2023;7:11. https://doi.org/10.1038/s41529-023-00327-8.
Cabral H, Fonseca V, Sousa T, Costa Leal M. Synergistic Effects of Climate Change and Marine Pollution: An Overlooked Interaction in Coastal and Estuarine Areas. IJERPH 2019;16:2737. https://doi.org/10.3390/ijerph16152737.
Simms NJ, Sumner J. High Temperature Corrosion. Comprehensive Structural Integrity, Elsevier; 2023, p. 400–33. https://doi.org/10.1016/B978-0-12-822944-6.00012-8.
Li W, Woo OT, Guzonas D, Li J, Huang X, Sanchez R, et al. Effect of Pressure on the Corrosion of Materials in High Temperature Water. In: Carpenter JS, Bai C, Escobedo JP, Hwang J-Y, Ikhmayies S, Li B, et al., editors. Characterization of Minerals, Metals, and Materials 2015, Cham: Springer International Publishing; 2015, p. 99–106. https://doi.org/10.1007/978-3-319-48191-3_12.
Xiang Y, Wang Z, Li Z, Ni WD. Effect of temperature on corrosion behaviour of X70 steel in high pressure CO2/SO2/O2/H2O environments. Corrosion Engineering, Science and Technology 2013;48:121–9. https://doi.org/10.1179/1743278212Y.0000000050.
Wouters Y, Latu-Romain L. Corrosion in Pressurized Water. Encyclopedia of Interfacial Chemistry, Elsevier; 2018, p. 155–63. https://doi.org/10.1016/B978-0-12-409547-2.13875-2.
Ubah CG, Asselin E. High Pressure and Temperature Electrochemical Cell Design for Corrosion Research: Part I. ECS Trans 2009;19:3–20. https://doi.org/10.1149/1.3259795.
Sequeira CAC. Role of solid state chemistry in high temperature corrosion. Chemical Engineering Research and Design 2013;91:318–24. https://doi.org/10.1016/j.cherd.2012.09.021.
Jin Q, Dai G, Wang Y, Wang Z, Shan Z, Wang X, et al. High-temperature corrosion of water-wall tubes in oxy-combustion atmosphere. Journal of the Energy Institute 2020;93:1305–12. https://doi.org/10.1016/j.joei.2019.11.013.
Kim S-Y, Taylor CD. Molecular dynamics of the early stages of high-temperature corrosion. Phys Rev Materials 2021;5:113402. https://doi.org/10.1103/PhysRevMaterials.5.113402.
Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review. The Journal of Supercritical Fluids 2004;29:1–29. https://doi.org/10.1016/S0896-8446(03)00031-7.
Chang Y-N, Wei F-I. High-temperature chlorine corrosion of metals and alloys: A review. J Mater Sci 1991;26:3693–8. https://doi.org/10.1007/BF01184958.
Schwandt C, Fray DJ. Use of Molten Salt Fluxes and Cathodic Protection for Preventing the Oxidation of Titanium at Elevated Temperatures. Metall Mater Trans B 2014;45:2145–52. https://doi.org/10.1007/s11663-014-0134-8.
Grabke HJ, Sämann N, Müller-Lorenz EM. Improvement of stainless steels for use at elevated temperatures in aggressive environments. Technical Steel Research, Directorate-General for Research; 2002.
Uusitalo MA, Vuoristo PMJ, Mäntylä TA. High temperature corrosion of coatings and boiler steels in reducing chlorine-containing atmosphere. Surface and Coatings Technology 2002;161:275–85. https://doi.org/10.1016/S0257-8972(02)00472-3.
Liu S, Yuanliang L, Hong Z, Jiayan Z, Dong Y. Experimental study on corrosion resistance of coiled tubing welds in high temperature and pressure environment. PLoS ONE 2021;16:e0244237. https://doi.org/10.1371/journal.pone.0244237.
Xu M, Li Y, Ma Y. Materials by design at high pressures. Chem Sci 2022;13:329–44. https://doi.org/10.1039/D1SC04239D.
Rojacz H, Zikin A, Mozelt C, Winkelmann H, Badisch E. High temperature corrosion studies of cermet particle reinforced NiCrBSi hardfacings. Surface and Coatings Technology 2013;222:90–6. https://doi.org/10.1016/j.surfcoat.2013.02.009.
Bojinov M, Kinnunen P, Laitinen T, Mäkelä K, Mäkelä M, Saario T, et al. Technical Note: Detection of Soluble Species Released during Metal Corrosion in High-Temperature Aqueous Solutions. CORROSION 2001;57:387–93. https://doi.org/10.5006/1.3290362.
Farhadian A, Guo L. Development of high temperature corrosion inhibitors. Eco-Friendly Corrosion Inhibitors, Elsevier; 2022, p. 451–84. https://doi.org/10.1016/B978-0-323-91176-4.00019-2.
Myers DL, Jacobson NS, Bauschlicher CW, Opila EJ. Thermochemistry of volatile metal hydroxides and oxyhydroxides at elevated temperatures. J Mater Res 2019;34:394–407. https://doi.org/10.1557/jmr.2018.425.
Kritzer P, Boukis N, Dinjus E. Factors controlling corrosion in high-temperature aqueous solutions: a contribution to the dissociation and solubility data influencing corrosion processes. The Journal of Supercritical Fluids 1999;15:205–27. https://doi.org/10.1016/S0896-8446(99)00009-1.
Dudova N. Creep and Deformation of Metals and Alloys at Elevated Temperatures. Metals 2021;11:1837. https://doi.org/10.3390/met11111837.
Zhang K, El-Kharouf A, Caykara T, Steinberger-Wilckens R. Effect of Temperature and Water Content on the Oxidation Behaviour and Cr Evaporation of High-Cr Alloys for SOFC Cathode Air Preheaters. High Temperature Corrosion of Mater 2023;100:21–45. https://doi.org/10.1007/s11085-023-10167-1.
Waeytens M, Syed AdnanU, Roberts T, Martinez FD, Gray S, Nicholls JohnR. A microscopy study of nickel-based superalloys performance in type I hot corrosion conditions. Materials at High Temperatures 2023;40:272–82. https://doi.org/10.1080/09603409.2023.2188355.
Karimihaghighi R, Naghizadeh M. Effect of alloying elements on aqueous corrosion of nickel‐based alloys at high temperatures: A review. Materials & Corrosion 2023;74:1246–55. https://doi.org/10.1002/maco.202213705.
Šulák I, Chlupová A, Obrtlík K. High-Temperature Low Cycle Fatigue of Nickel-Based Superalloy IN738LC. DDF 2023;422:27–32. https://doi.org/10.4028/p-1jt26m.
Guo X, He H, Chen F, Liu J, Li W, Zhao H. Microstructural Degradation and Creep Property Damage of a Second-Generation Single Crystal Superalloy Caused by High Temperature Overheating. Materials 2023;16:1682. https://doi.org/10.3390/ma16041682.
Nandam SR, Venugopal Rao A, Gokhale AA, Joshi SS. Experimental Study on Surface Integrity of Single-Crystal Nickel-Based Superalloy Under Various Machining Processes. In: Dixit US, Kanthababu M, Ramesh Babu A, Udhayakumar S, editors. Advances in Forming, Machining and Automation, Singapore: Springer Nature Singapore; 2023, p. 305–17. https://doi.org/10.1007/978-981-19-3866-5_26.
Gariboldi E, Spigarelli S. High-Temperature Behavior of Metals. Metals 2021;11:1128. https://doi.org/10.3390/met11071128.
Verma C. Basics and theories of corrosion: thermodynamics and electrochemistry. Handbook of Science & Engineering of Green Corrosion Inhibitors, Elsevier; 2022, p. 21–30. https://doi.org/10.1016/B978-0-323-90589-3.00002-1.
Klenam DEP, McBagonluri F, Bamisaye OS, Asumadu TK, Ankah NK, Bodunrin MO, et al. Corrosion resistant materials in high-pressure high-temperature oil wells: An overview and potential application of complex concentrated alloys. Engineering Failure Analysis 2024;157:107920. https://doi.org/10.1016/j.engfailanal.2023.107920.
Wu S, Li H, Futaba DN, Chen G, Chen C, Zhou K, et al. Structural Design and Fabrication of Multifunctional Nanocarbon Materials for Extreme Environmental Applications. Advanced Materials 2022;34:2201046. https://doi.org/10.1002/adma.202201046.
Sarkar S, Sarswat PK, Free ML. Elevated temperature corrosion resistance of additive manufactured single phase AlCoFeNiTiV0.9Sm0.1 and AlCoFeNiV0.9Sm0.1 HEAs in a simulated syngas atmosphere. Additive Manufacturing 2019;30:100902. https://doi.org/10.1016/j.addma.2019.100902.
Howard J, Carlson K, Chidambaram D. High-temperature metallic glasses: Status, needs, and opportunities. Phys Rev Materials 2021;5:040301. https://doi.org/10.1103/PhysRevMaterials.5.040301.
Smith TM, Kantzos CA, Zarkevich NA, Harder BJ, Heczko M, Gradl PR, et al. A 3D printable alloy designed for extreme environments. Nature 2023;617:513–8. https://doi.org/10.1038/s41586-023-05893-0.
Kenel C, De Luca A, Leinenbach C, Dunand DC. High-Temperature Creep Properties of an Additively Manufactured Y2O3 Oxide Dispersion-Strengthened Ni–Cr–Al–Ti γ/γ’ Superalloy. Adv Eng Mater 2022;24:2200753. https://doi.org/10.1002/adem.202200753.
Li X, Du J, Xu J, Wang S, Shen M, Jiang C. Crack Inhibition and Performance Modification of NiCoCr-Based Superalloy with Y2O3 Nanoparticles by Laser Metal Deposition. Materials 2023;16:3616. https://doi.org/10.3390/ma16103616.
Liu F, He C, Jiang Y, Feng J, Li L, Tang G, et al. Ultralight Ceramic Fiber Aerogel for High-Temperature Thermal Superinsulation. Nanomaterials 2023;13:1305. https://doi.org/10.3390/nano13081305.
Wang F, Monteverde F, Cui B. Will high-entropy carbides and borides be enabling materials for extreme environments? Int J Extrem Manuf 2023;5:022002. https://doi.org/10.1088/2631-7990/acbd6e.
Kozhanova MYu, Boronenko MP, Zelensky VI. The production of corrosion alloy by self-propagating high-temperature synthesis. Yugra State University Bulletin 2022;18:22–9. https://doi.org/10.18822/byusu20220222-29.
Czupryński A, Adamiec J, Adamiak M, Żuk M, Kříž A, Mele C, et al. High-Temperature Corrosion of Flame-Sprayed Power Boiler Components with Nickel Alloy Powders. Materials 2023;16:1658. https://doi.org/10.3390/ma16041658.
Dudziak T, Olbrycht A, Polkowska A, Boron L, Skierski P, Wypych A, et al. High temperature coatings from post processing Fe-based chips and Ni-based alloys as a solution for critical raw materials. IOP Conf Ser: Mater Sci Eng 2018;329:012010. https://doi.org/10.1088/1757-899X/329/1/012010.
Grosu Y, Nithiyanantham U, Zaki A, Faik A. A simple method for the inhibition of the corrosion of carbon steel by molten nitrate salt for thermal storage in concentrating solar power applications. Npj Mater Degrad 2018;2:34. https://doi.org/10.1038/s41529-018-0055-0.
Medvedovski E, Leal Mendoza G. Enamel (glassy) coatings for steel protection against high temperature corrosion. Advances in Applied Ceramics: Structural, Functional and Bioceramics 2023;122:145–69. https://doi.org/10.1080/17436753.2023.2231699.
Li R, Tian S, Tian Y, Wang J, Xu S, Yang K, et al. An Extreme‐Environment‐Resistant Self‐Healing Anti‐Icing Coating. Small 2023;19:2206075. https://doi.org/10.1002/smll.202206075.
Milan Shahana S, Bakshi SR, Kamaraj M. High-Temperature Oxidation and Hot Corrosion of Thermal Spray Coatings. In: Kamachi Mudali U, Subba Rao T, Ningshen S, G. Pillai R, P. George R, Sridhar TM, editors. A Treatise on Corrosion Science, Engineering and Technology, Singapore: Springer Nature Singapore; 2022, p. 407–20. https://doi.org/10.1007/978-981-16-9302-1_22.
Tang C, Große M, Ulrich S, Klimenkov M, Jäntsch U, Seifert HJ, et al. High-temperature oxidation and hydrothermal corrosion of textured Cr2AlC-based coatings on zirconium alloy fuel cladding. Surface and Coatings Technology 2021;419:127263. https://doi.org/10.1016/j.surfcoat.2021.127263.
Stathokostopoulos D, Vogiatzis CA, Chrissafis K, Skolianos S, Vourlias G, Chaliampalias D. Investigation of the Protection Performance of Mg and Al Coated Copper in High Temperature or Marine Environments. Coatings 2021;11:337. https://doi.org/10.3390/coatings11030337.
Markov MA, Kashtanov AD, Krasikov AV, Bykova AD, Gerashchenkov DA, Makarov AM, et al. Corrosion-Resistant Ceramic Coatings that are Promising for Use in Liquid Metal Environments. KEM 2019;822:752–9. https://doi.org/10.4028/www.scientific.net/KEM.822.752.
Elizarova YuA, Zakharov AI. High-Temperature Functional Protective Coatings. Refract Ind Ceram 2021;61:592–9. https://doi.org/10.1007/s11148-021-00525-4.
Kamal S, Sharma KV, Srinivasa Rao P, Mamat O. Thermal Spray Coatings for Hot Corrosion Resistance. In: Korada VS, Hisham B Hamid N, editors. Engineering Applications of Nanotechnology, Cham: Springer International Publishing; 2017, p. 235–68. https://doi.org/10.1007/978-3-319-29761-3_10.
Moldabayeva GZh, Kozlovskiy АL, Kuldeyev EI, Syzdykov АKh, Buktukov NS. Efficiency of using nitride and oxy-nitride coatings for protection against high-temperature oxidation and embrittlement of the surface layer of steel structures. ES Materials & Manufacturing 2024:1–10. https://doi.org/10.30919/esmm1129.
Yang H, Wu Y, Sun Q, Yang F, Xia C, Xia S, et al. Study on High Temperature Properties of Yttrium-Modified Aluminide Coating on K444 Alloy by Chemical Vapor Deposition. Coatings 2024;14:750. https://doi.org/10.3390/coatings14060750.
Alsultani KF, Majidi HSh, Abdulameer S. Improve the Hot Corrosion Behaviors of the Inconel 738LC Coating with Nano YSZ–CNTs. International Journal of Chemical Engineering and Applications 2024;15:1–6. https://doi.org/10.18178/ijcea.2024.15.1.806.