Investigating the therapeutic effect of folic acid conjugated ZnO nanoparticles on human triple negative breast cancer cell line
DOI:
https://doi.org/10.5937/zasmat2302213SKeywords:
nanoparticle, zinc oxide, folic acid, triple negative breast cancerAbstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of all invasive breast cancers and has a poor prognosis. ZnO NPs are promising anti-cancer agents. Moreover, folate Alpha receptor (FRa) is a potential biomarker and therapeutic target because it is significantly expressed in TNBC. Therefore, ZnO and folic acid-conjugated ZnO (F-ZnO) NPs were synthesized by the solgel method. NPs were characterized by DLS, zeta potential, TEM, FTIR, and ICP-MS. FA-ZnO NPs had a mean diameter of 20 ± 2 nm and a surface charge of -15 mV, while ZnO NPs had a mean diameter of 40 ± 5 nm and a surface charge of -5 mV. The MTT assay and trypan blue test, respectively, were used to determine the cytotoxicity and viability percentage of ZnO and F-ZnO NPs at different concentrations of 2, 4, 8, 16, 32, 64 and 128 µg/mL for 12, 24, 48 and 72 hours (h) on the human TNBC cell line MDA-MB-231. The results indicated that both ZnO and F-ZnO NPs significantly reduced the viability of the cancer cells in a dose-dependent and time-dependent manner (p<0.05). The IC50 values for FA-ZnO NPs were approximately 3, 3.74, 4.38 and 5.5 times higher than those for ZnO NPs at 12-, 24-, 48and 72-hour time points, respectively. The results suggest that F-ZnO NPs have the potential to be a good option for TNBC treatment and warrant further investigations.References
Abdel-Razeq, H., Tamimi, F., Abujamous, L., Edaily, S., Abunasser, M., Bater, R., Salama, O. (2021) Patterns and prevalence of BRCA1 and BRCA2 germline mutations among patients with triple-negative breast cancer: Regional perspectives.Cancer Management and Research, 13: 4597-4604
https://doi.org/10.2147/CMAR.S316470
Adel, M., Zahmatkeshan, M., Johari, B., Kharrazi, S., Mehdizadeh, M., Bolouri, B., Rezayat, S.M. (2017) Investigating the effects of electrical stimulation via gold nanoparticles on in vitro neurite outgrowth: Perspective to nerve regeneration.Microelectronic Engineering, 173: 1-5
https://doi.org/10.1016/j.mee.2017.03.006
Akhtar, M., Ahamed, M., Kumar, S., Khan, M., Ahmad, J., Alrokayan, S. (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species.International Journal of Nanomedicine, 7: 845-857
https://doi.org/10.2147/IJN.S29129
Bauer, K., Brown, M., Cress, R., Parise, C., Caggiano, V. (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry.Cancer, 109(9): 1721-1728
https://doi.org/10.1002/cncr.22618
Berrouet, C., Dorilas, N., Rejniak, K.A., Tuncer, N. (2020) Comparison of drug inhibitory effects (IC _ 50 IC 50) in monolayer and spheroid cultures.Bulletin of Mathematical Biology, 82(6): 1-23
https://doi.org/10.1007/s11538-020-00746-7
Bisht, G., Rayamajhi, S. (2016) ZnO nanoparticles: A promising anticancer agent.Nanobiomedicine, 3: 3-9
Cheung, A., Bax, H.J., Josephs, D.H., Ilieva, K.M., Pellizzari, G., Opzoomer, J., Bloomfield, J., Fittall, M., Grigoriadis, A., Figini, M., Canevari, S., Spicer, J.F., Tutt, A.N., Karagiannis, S.N. (2016) Targeting folate receptor Alpha for cancer treatment.Oncotarget, 7(32): 52553-52574
https://doi.org/10.18632/oncotarget.9651
Chithra, M., Sathya, M., Pushpanathan, K. (2015) Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method.Acta Metallurgica Sinica (English Letters), 28(3): 394-404
https://doi.org/10.1007/s40195-015-0218-8
Dickens, C., Duarte, R., Zietsman, A., Cubasch, H., Kellett, P., Schüz, J., Kielkowski, D., McCormack, V. (2014) Racial comparison of receptor-defined breast cancer in southern African women: Subtype prevalence and age-incidence analysis of nationwide cancer registry data.Cancer Epidemiology, Biomarkers & Prevention, 23(11): 2311-2321
https://doi.org/10.1158/1055-9965.EPI-14-0603
Dogan, B., Turnbull, I. (2012) Imaging of triplenegative breast cancer.Annals of Oncology, 23: 23-29
https://doi.org/10.1093/annonc/mds191
Dutta, S., Ganguly, B.N. (2012) Characterization of ZnO nanoparticles grown in presence of folic acid template.Journal of Nanobiotechnology, 10(1): 1-10
https://doi.org/10.1186/1477-3155-10-29
El-Borady, O.M., El-Sayed, A.F. (2020) Synthesis, morphological, spectral and thermal studies for folic acid conjugated ZnO nanoparticles: Potency for multi-functional bio-nanocomposite as antimicrobial, antioxidant and photocatalytic agent.Journal of Materials Research and Technology, 9(2): 1905-1917
https://doi.org/10.1016/j.jmrt.2019.12.022
Fernández, M., Javaid, F., Chudasama, V. (2018) Advances in targeting the folate receptor in the treatment/imaging of cancers.Chemical Science, 9(4): 790-810
https://doi.org/10.1039/C7SC04004K
Gomes, H.I.O., Martins, C.S.M., Prior, J.A.V. (2021) Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells.Nanomaterials, 11(4): 964-964
https://doi.org/10.3390/nano11040964
Guo, D., Wu, C., Jiang, H., Li, Q., Wang, X., Chen, B. (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation.Journal of Photochemistry and Photobiology B: Biology, 93(3): 119-126
https://doi.org/10.1016/j.jphotobiol.2008.07.009
Guo, Y., Sun, Z. (2020) Investigating folate-conjugated combinatorial drug loaded ZnO nanoparticles for improved efficacy on nasopharyngeal carcinoma cell lines.Journal of Experimental Nanoscience, 15(1): 390-405
https://doi.org/10.1080/17458080.2020.1785621
Hanley, C., Layne, J., Punnoose, A., Reddy, K.M., Coombs, I., Coombs, A., Feris, K., Wingett, D. (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles.Nanotechnology, 19(29): 295103-295103
https://doi.org/10.1088/0957-4484/19/29/295103
Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J., Wingett, D.G. (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction.Nanoscale Research Letters, 4(12): 1409-1420
https://doi.org/10.1007/s11671-009-9413-8
Hartmann, L., Keeney, G., Lingle, W., Christianson, T., Varghese, B., Hillman, D., Oberg, A., Low, P. (2007) Folate receptor overexpression is associated with poor outcome in breast cancer.International Journal of Cancer, 121(5): 938-942
https://doi.org/10.1002/ijc.22811
He, J.-.S., Liu, S., Zhang, Y., Chu, X., Lin, Z., Zhao, Z., Qiu, S., Guo, Y., Ding, H., Pan, Y. (2021) The application of and strategy for gold nanoparticles in cancer immunotherapy.Frontiers in Pharmacology, 12: 1430-14630
https://doi.org/10.3389/fphar.2021.687399
Iacoviello, L., Bonaccio, M., de Gaetano, G., Donati, M. (2021) Epidemiology of breast cancer, a paradigm of the 'common soil' hypothesis. in: Seminars in Cancer Biology Elsevier, 4-10
https://doi.org/10.1016/j.semcancer.2020.02.010
Jain, V., Kumar, H., Anod, H.V., Chand, P., Gupta, V.N., Dey, S., Kesharwani, S.S. (2020) A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer.Journal of Controlled Release, 326: 628-647
https://doi.org/10.1016/j.jconrel.2020.07.003
Khandelwal, S., Boylan, M., Kirsch, G., Spallholz, J.E., Gollahon, L.S. (2020) Investigating the potential of conjugated selenium redox folic acid as a treatment for triple negative breast cancer.Antioxidants, 9(2): 138-146
https://doi.org/10.3390/antiox9020138
Kohler, B.A., Sherman, R.L., Howlader, N., Jemal, A., Ryerson, A., Henry, K.A., Boscoe, F.P., Cronin, K.A., Lake, A., Noone, A., Henley, J.S., Eheman, C.R., Anderson, R.N., Penberthy, L. (2015) Annual report to the nation on the status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state.JNCI: Journal of the National Cancer Institute, 107(6): 48-56
https://doi.org/10.1093/jnci/djv048
Kundu, M., Sadhukhan, P., Ghosh, N., Chatterjee, S., Manna, P., Das, J., Sil, P.C. (2019) PH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy.Journal of Advanced Research, 18: 161-172
https://doi.org/10.1016/j.jare.2019.02.036
Marfavi, Z.H., Farhadi, M., Jameie, S.B., Zahmatkeshan, M., Pirhajati, V., Jameie, M. (2019) Glioblastoma U-87MG tumour cells suppressed by ZnO folic acid-conjugated nanoparticles: An in vitro study.Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 2783-2790
https://doi.org/10.1080/21691401.2019.1577889
Mirzaei-Parsa, M., Najafabadi, M., Haeri, A., Zahmatkeshan, M., Ebrahimi, S., Pazoki-Toroudi, H., Adel, M. (2020) Preparation, characterization, and evaluation of the anticancer activity of artemetherloaded nano-niosomes against breast cancer.Breast Cancer, 27(2): 243-251
https://doi.org/10.1007/s12282-019-01014-w
Mohammed, E.D. (2014) Qualitative and quantitative determination of folic acid in tablets by FTIR spectroscopy.IJAPBC, 3: 773-780
Moss, J.L., Tatalovich, Z., Zhu, L., Morgan, C., Cronin, K.A. (2021) Triple-negative breast cancer incidence in the United States: Ecological correlations with area-level sociodemographics, healthcare, and health behaviors.Breast Cancer, 28(1): 82-91
https://doi.org/10.1007/s12282-020-01132-w
Nagaraju, G., Udayabhanu,, Shivaraj,, Prashanth, S.A., Shastri, M., Yathish, K.V., Anupama, C., Rangappa, D. (2017) Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag-ZnO nanomaterial.Materials Research Bulletin, 94: 54-63
https://doi.org/10.1016/j.materresbull.2017.05.043
Narmani, A., Rezvani, M., Farhood, B., Darkhor, P., Mohammadnejad, J., Amini, B., Refahi, S., Abdi, G.N. (2019) Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems.Drug Development Research, 80(4): 404-424
https://doi.org/10.1002/ddr.21545
Necela, B., Crozier, J., Andorfer, C., Lewis-Tuffin, L., Kachergus, J., Geiger, X., Kalari, K., Serie, D., Sun, Z., Aspita, A. (2015) Folate receptor-a (FOLR1) expression and function in triple negative tumors.PLoS One, 10(3): e0122209-e0122209
https://doi.org/10.1371/journal.pone.0122209
Sarin, R., Khandrika, L., Hanitha, R., Avula, A., Batra, M., Kaul, S., Raj, H., Shivkumar, S., Gupta, S., Khan, E. (2021) Epidemiological and survival analysis of triple-negative breast cancer cases in a retrospective multicenter study.Indian J Cancer, 53(3): 353-359
https://doi.org/10.4103/0019-509X.200682
Silva, J., Rodrigues, F., Mesquita, G., Fernandes, P., Thuler, L.C., de Melo, A. (2021) Triple-negative breast cancer: Assessing the role of immunohistochemical biomarkers on neoadjuvant treatment.Breast Cancer: Targets and Therapy, 13: 31-42
https://doi.org/10.2147/BCTT.S287320
Song, E., Zhang, Z., Luo, Q., Lu, W., Shi, Y., Pang, D. (2009) Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis.Clinical Chemistry, 55(5): 955-963
https://doi.org/10.1373/clinchem.2008.113423
Sung, H., Ferlay, J.F., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: A Cancer Journal for Clinicians, 71(3): 209-249
https://doi.org/10.3322/caac.21660
Thakur, V., Kutty, R.V. (2019) Recent advances in nanotheranostics for triple negative breast cancer treatment.Journal of Experimental & Clinical Cancer Research, 38(1): 1-22
https://doi.org/10.1186/s13046-019-1443-1
Trivers, K.F., Lund, M.J., Porter, P.L., Liff, J.M., Flagg, E.W., Coates, R.J., Eley, J. (2009) The epidemiology of triple-negative breast cancer, including race.Cancer Causes & Control, 20(7): 1071-1082
https://doi.org/10.1007/s10552-009-9331-1
Wang, H., Wingett, D., Engelhard, M.H., Feris, K., Reddy, K.M., Turner, P., Layne, J., Hanley, C., Bell, J., Tenne, D., Wang, C., Punnoose, A. (2009) Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications.Journal of Materials Science: Materials in Medicine, 20(1): 11-22
https://doi.org/10.1007/s10856-008-3541-z
Yadav, B., Sharma, S., Chanana, P., Jhamb, S. (2014) Systemic treatment strategies for triple-negative breast cancer.World Journal of Clinical Oncology, 5(2): 125-133
https://doi.org/10.5306/wjco.v5.i2.125
Youssef, Z., Vanderesse, R., Colombeau, L., Baros, F., Roques-Carmes, T., Frochot, C., Wahab, H., Toufaily, J., Hamieh, T., Acherar, S., Gazzali, A.M. (2017) The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy.Cancer Nanotechnology, 8(1): 1-6
https://doi.org/10.1186/s12645-017-0032-2
Zahmatkeshan, M., Ilkhani, H., Paknejad, M., Adel, M., Sarkar, S., Saber, R. (2015) Analytical characterization of label-free immunosensor subsystems based on multi-walled carbon nanotube arraymodified gold interface.Combinatorial Chemistry & High Throughput Screening, 18(1): 83-88
https://doi.org/10.2174/1386207318666141212165513
Zahmatkeshan, M., Gheybi, F., Rezayat, S.M., Jaafari, M.R. (2016) Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model.European Journal of Pharmaceutical Sciences, 86: 125-135
https://doi.org/10.1016/j.ejps.2016.03.009
Zhang, Z., Wang, J., Tacha, D., Li, P., Bremer, R., Chen, H., Wei, B., Xiao, X., da J., Skinner, K. (2014) Folate receptor a associated with triple-negative breast cancer and poor prognosis.Archives of Pathology and Laboratory Medicine, 138(7): 890-895
Downloads
Published
Issue
Section
License
Copyright (c) 2023 CC BY 4.0 by Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.