Investigating the therapeutic effect of folic acid conjugated ZnO nanoparticles on human triple negative breast cancer cell line

Authors

  • Shiva Sabzandam Islamic Azad University, Tehran Medical Sciences, Faculty of Advanced Sciences and Technology, Department of Medical Nanotechnology, Tehran Author
  • Masoumeh Zahmatkeshan Iran University of Medical Sciences, Cellular and Molecular Research Center, Tehran, Iran + Iran University of Medical Sciences, Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology, Tehran, Iran Author
  • Moein Adel Tabriz University of Medical Sciences, Department of Medical Nanotechnology, Tabriz, Iran Author
  • Mehrad Mehrdadian Iran University of Medical Sciences, School of Medicine-International Campus, Tehran, Iran Author
  • Farzaneh Saliminia Iran University of Medical Sciences, Faculty of Advanced Technologies in Medicine, Department of Medical Nanotechnology, Tehran, Iran Author
  • Fariba Esmaeili Tehran University of Medical Sciences, School of Advanced Technologies in Medicine, Department of Medical Nanotechnology, Tehran, Iran Author

DOI:

https://doi.org/10.5937/zasmat2302213S

Keywords:

nanoparticle, zinc oxide, folic acid, triple negative breast cancer

Abstract

Triple-negative breast cancer (TNBC) accounts for 15-20% of all invasive breast cancers and has a poor prognosis. ZnO NPs are promising anti-cancer agents. Moreover, folate Alpha receptor (FRa) is a potential biomarker and therapeutic target because it is significantly expressed in TNBC. Therefore, ZnO and folic acid-conjugated ZnO (F-ZnO) NPs were synthesized by the solgel method. NPs were characterized by DLS, zeta potential, TEM, FTIR, and ICP-MS. FA-ZnO NPs had a mean diameter of 20 ± 2 nm and a surface charge of -15 mV, while ZnO NPs had a mean diameter of 40 ± 5 nm and a surface charge of -5 mV. The MTT assay and trypan blue test, respectively, were used to determine the cytotoxicity and viability percentage of ZnO and F-ZnO NPs at different concentrations of 2, 4, 8, 16, 32, 64 and 128 µg/mL for 12, 24, 48 and 72 hours (h) on the human TNBC cell line MDA-MB-231. The results indicated that both ZnO and F-ZnO NPs significantly reduced the viability of the cancer cells in a dose-dependent and time-dependent manner (p<0.05). The IC50 values for FA-ZnO NPs were approximately 3, 3.74, 4.38 and 5.5 times higher than those for ZnO NPs at 12-, 24-, 48and 72-hour time points, respectively. The results suggest that F-ZnO NPs have the potential to be a good option for TNBC treatment and warrant further investigations.

References

Abdel-Razeq, H., Tamimi, F., Abujamous, L., Edaily, S., Abunasser, M., Bater, R., Salama, O. (2021) Patterns and prevalence of BRCA1 and BRCA2 germline mutations among patients with triple-negative breast cancer: Regional perspectives.Cancer Management and Research, 13: 4597-4604

https://doi.org/10.2147/CMAR.S316470

Adel, M., Zahmatkeshan, M., Johari, B., Kharrazi, S., Mehdizadeh, M., Bolouri, B., Rezayat, S.M. (2017) Investigating the effects of electrical stimulation via gold nanoparticles on in vitro neurite outgrowth: Perspective to nerve regeneration.Microelectronic Engineering, 173: 1-5

https://doi.org/10.1016/j.mee.2017.03.006

Akhtar, M., Ahamed, M., Kumar, S., Khan, M., Ahmad, J., Alrokayan, S. (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species.International Journal of Nanomedicine, 7: 845-857

https://doi.org/10.2147/IJN.S29129

Bauer, K., Brown, M., Cress, R., Parise, C., Caggiano, V. (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry.Cancer, 109(9): 1721-1728

https://doi.org/10.1002/cncr.22618

Berrouet, C., Dorilas, N., Rejniak, K.A., Tuncer, N. (2020) Comparison of drug inhibitory effects (IC _ 50 IC 50) in monolayer and spheroid cultures.Bulletin of Mathematical Biology, 82(6): 1-23

https://doi.org/10.1007/s11538-020-00746-7

Bisht, G., Rayamajhi, S. (2016) ZnO nanoparticles: A promising anticancer agent.Nanobiomedicine, 3: 3-9

https://doi.org/10.5772/63437

Cheung, A., Bax, H.J., Josephs, D.H., Ilieva, K.M., Pellizzari, G., Opzoomer, J., Bloomfield, J., Fittall, M., Grigoriadis, A., Figini, M., Canevari, S., Spicer, J.F., Tutt, A.N., Karagiannis, S.N. (2016) Targeting folate receptor Alpha for cancer treatment.Oncotarget, 7(32): 52553-52574

https://doi.org/10.18632/oncotarget.9651

Chithra, M., Sathya, M., Pushpanathan, K. (2015) Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method.Acta Metallurgica Sinica (English Letters), 28(3): 394-404

https://doi.org/10.1007/s40195-015-0218-8

Dickens, C., Duarte, R., Zietsman, A., Cubasch, H., Kellett, P., Schüz, J., Kielkowski, D., McCormack, V. (2014) Racial comparison of receptor-defined breast cancer in southern African women: Subtype prevalence and age-incidence analysis of nationwide cancer registry data.Cancer Epidemiology, Biomarkers & Prevention, 23(11): 2311-2321

https://doi.org/10.1158/1055-9965.EPI-14-0603

Dogan, B., Turnbull, I. (2012) Imaging of triplenegative breast cancer.Annals of Oncology, 23: 23-29

https://doi.org/10.1093/annonc/mds191

Dutta, S., Ganguly, B.N. (2012) Characterization of ZnO nanoparticles grown in presence of folic acid template.Journal of Nanobiotechnology, 10(1): 1-10

https://doi.org/10.1186/1477-3155-10-29

El-Borady, O.M., El-Sayed, A.F. (2020) Synthesis, morphological, spectral and thermal studies for folic acid conjugated ZnO nanoparticles: Potency for multi-functional bio-nanocomposite as antimicrobial, antioxidant and photocatalytic agent.Journal of Materials Research and Technology, 9(2): 1905-1917

https://doi.org/10.1016/j.jmrt.2019.12.022

Fernández, M., Javaid, F., Chudasama, V. (2018) Advances in targeting the folate receptor in the treatment/imaging of cancers.Chemical Science, 9(4): 790-810

https://doi.org/10.1039/C7SC04004K

Gomes, H.I.O., Martins, C.S.M., Prior, J.A.V. (2021) Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells.Nanomaterials, 11(4): 964-964

https://doi.org/10.3390/nano11040964

Guo, D., Wu, C., Jiang, H., Li, Q., Wang, X., Chen, B. (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation.Journal of Photochemistry and Photobiology B: Biology, 93(3): 119-126

https://doi.org/10.1016/j.jphotobiol.2008.07.009

Guo, Y., Sun, Z. (2020) Investigating folate-conjugated combinatorial drug loaded ZnO nanoparticles for improved efficacy on nasopharyngeal carcinoma cell lines.Journal of Experimental Nanoscience, 15(1): 390-405

https://doi.org/10.1080/17458080.2020.1785621

Hanley, C., Layne, J., Punnoose, A., Reddy, K.M., Coombs, I., Coombs, A., Feris, K., Wingett, D. (2008) Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles.Nanotechnology, 19(29): 295103-295103

https://doi.org/10.1088/0957-4484/19/29/295103

Hanley, C., Thurber, A., Hanna, C., Punnoose, A., Zhang, J., Wingett, D.G. (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction.Nanoscale Research Letters, 4(12): 1409-1420

https://doi.org/10.1007/s11671-009-9413-8

Hartmann, L., Keeney, G., Lingle, W., Christianson, T., Varghese, B., Hillman, D., Oberg, A., Low, P. (2007) Folate receptor overexpression is associated with poor outcome in breast cancer.International Journal of Cancer, 121(5): 938-942

https://doi.org/10.1002/ijc.22811

He, J.-.S., Liu, S., Zhang, Y., Chu, X., Lin, Z., Zhao, Z., Qiu, S., Guo, Y., Ding, H., Pan, Y. (2021) The application of and strategy for gold nanoparticles in cancer immunotherapy.Frontiers in Pharmacology, 12: 1430-14630

https://doi.org/10.3389/fphar.2021.687399

Iacoviello, L., Bonaccio, M., de Gaetano, G., Donati, M. (2021) Epidemiology of breast cancer, a paradigm of the 'common soil' hypothesis. in: Seminars in Cancer Biology Elsevier, 4-10

https://doi.org/10.1016/j.semcancer.2020.02.010

Jain, V., Kumar, H., Anod, H.V., Chand, P., Gupta, V.N., Dey, S., Kesharwani, S.S. (2020) A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer.Journal of Controlled Release, 326: 628-647

https://doi.org/10.1016/j.jconrel.2020.07.003

Khandelwal, S., Boylan, M., Kirsch, G., Spallholz, J.E., Gollahon, L.S. (2020) Investigating the potential of conjugated selenium redox folic acid as a treatment for triple negative breast cancer.Antioxidants, 9(2): 138-146

https://doi.org/10.3390/antiox9020138

Kohler, B.A., Sherman, R.L., Howlader, N., Jemal, A., Ryerson, A., Henry, K.A., Boscoe, F.P., Cronin, K.A., Lake, A., Noone, A., Henley, J.S., Eheman, C.R., Anderson, R.N., Penberthy, L. (2015) Annual report to the nation on the status of cancer, 1975-2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state.JNCI: Journal of the National Cancer Institute, 107(6): 48-56

https://doi.org/10.1093/jnci/djv048

Kundu, M., Sadhukhan, P., Ghosh, N., Chatterjee, S., Manna, P., Das, J., Sil, P.C. (2019) PH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy.Journal of Advanced Research, 18: 161-172

https://doi.org/10.1016/j.jare.2019.02.036

Marfavi, Z.H., Farhadi, M., Jameie, S.B., Zahmatkeshan, M., Pirhajati, V., Jameie, M. (2019) Glioblastoma U-87MG tumour cells suppressed by ZnO folic acid-conjugated nanoparticles: An in vitro study.Artificial Cells, Nanomedicine, and Biotechnology, 47(1): 2783-2790

https://doi.org/10.1080/21691401.2019.1577889

Mirzaei-Parsa, M., Najafabadi, M., Haeri, A., Zahmatkeshan, M., Ebrahimi, S., Pazoki-Toroudi, H., Adel, M. (2020) Preparation, characterization, and evaluation of the anticancer activity of artemetherloaded nano-niosomes against breast cancer.Breast Cancer, 27(2): 243-251

https://doi.org/10.1007/s12282-019-01014-w

Mohammed, E.D. (2014) Qualitative and quantitative determination of folic acid in tablets by FTIR spectroscopy.IJAPBC, 3: 773-780

Moss, J.L., Tatalovich, Z., Zhu, L., Morgan, C., Cronin, K.A. (2021) Triple-negative breast cancer incidence in the United States: Ecological correlations with area-level sociodemographics, healthcare, and health behaviors.Breast Cancer, 28(1): 82-91

https://doi.org/10.1007/s12282-020-01132-w

Nagaraju, G., Udayabhanu,, Shivaraj,, Prashanth, S.A., Shastri, M., Yathish, K.V., Anupama, C., Rangappa, D. (2017) Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag-ZnO nanomaterial.Materials Research Bulletin, 94: 54-63

https://doi.org/10.1016/j.materresbull.2017.05.043

Narmani, A., Rezvani, M., Farhood, B., Darkhor, P., Mohammadnejad, J., Amini, B., Refahi, S., Abdi, G.N. (2019) Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems.Drug Development Research, 80(4): 404-424

https://doi.org/10.1002/ddr.21545

Necela, B., Crozier, J., Andorfer, C., Lewis-Tuffin, L., Kachergus, J., Geiger, X., Kalari, K., Serie, D., Sun, Z., Aspita, A. (2015) Folate receptor-a (FOLR1) expression and function in triple negative tumors.PLoS One, 10(3): e0122209-e0122209

https://doi.org/10.1371/journal.pone.0122209

Sarin, R., Khandrika, L., Hanitha, R., Avula, A., Batra, M., Kaul, S., Raj, H., Shivkumar, S., Gupta, S., Khan, E. (2021) Epidemiological and survival analysis of triple-negative breast cancer cases in a retrospective multicenter study.Indian J Cancer, 53(3): 353-359

https://doi.org/10.4103/0019-509X.200682

Silva, J., Rodrigues, F., Mesquita, G., Fernandes, P., Thuler, L.C., de Melo, A. (2021) Triple-negative breast cancer: Assessing the role of immunohistochemical biomarkers on neoadjuvant treatment.Breast Cancer: Targets and Therapy, 13: 31-42

https://doi.org/10.2147/BCTT.S287320

Song, E., Zhang, Z., Luo, Q., Lu, W., Shi, Y., Pang, D. (2009) Tumor cell targeting using folate-conjugated fluorescent quantum dots and receptor-mediated endocytosis.Clinical Chemistry, 55(5): 955-963

https://doi.org/10.1373/clinchem.2008.113423

Sung, H., Ferlay, J.F., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: A Cancer Journal for Clinicians, 71(3): 209-249

https://doi.org/10.3322/caac.21660

Thakur, V., Kutty, R.V. (2019) Recent advances in nanotheranostics for triple negative breast cancer treatment.Journal of Experimental & Clinical Cancer Research, 38(1): 1-22

https://doi.org/10.1186/s13046-019-1443-1

Trivers, K.F., Lund, M.J., Porter, P.L., Liff, J.M., Flagg, E.W., Coates, R.J., Eley, J. (2009) The epidemiology of triple-negative breast cancer, including race.Cancer Causes & Control, 20(7): 1071-1082

https://doi.org/10.1007/s10552-009-9331-1

Wang, H., Wingett, D., Engelhard, M.H., Feris, K., Reddy, K.M., Turner, P., Layne, J., Hanley, C., Bell, J., Tenne, D., Wang, C., Punnoose, A. (2009) Fluorescent dye encapsulated ZnO particles with cell-specific toxicity for potential use in biomedical applications.Journal of Materials Science: Materials in Medicine, 20(1): 11-22

https://doi.org/10.1007/s10856-008-3541-z

Yadav, B., Sharma, S., Chanana, P., Jhamb, S. (2014) Systemic treatment strategies for triple-negative breast cancer.World Journal of Clinical Oncology, 5(2): 125-133

https://doi.org/10.5306/wjco.v5.i2.125

Youssef, Z., Vanderesse, R., Colombeau, L., Baros, F., Roques-Carmes, T., Frochot, C., Wahab, H., Toufaily, J., Hamieh, T., Acherar, S., Gazzali, A.M. (2017) The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy.Cancer Nanotechnology, 8(1): 1-6

https://doi.org/10.1186/s12645-017-0032-2

Zahmatkeshan, M., Ilkhani, H., Paknejad, M., Adel, M., Sarkar, S., Saber, R. (2015) Analytical characterization of label-free immunosensor subsystems based on multi-walled carbon nanotube arraymodified gold interface.Combinatorial Chemistry & High Throughput Screening, 18(1): 83-88

https://doi.org/10.2174/1386207318666141212165513

Zahmatkeshan, M., Gheybi, F., Rezayat, S.M., Jaafari, M.R. (2016) Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model.European Journal of Pharmaceutical Sciences, 86: 125-135

https://doi.org/10.1016/j.ejps.2016.03.009

Zhang, Z., Wang, J., Tacha, D., Li, P., Bremer, R., Chen, H., Wei, B., Xiao, X., da J., Skinner, K. (2014) Folate receptor a associated with triple-negative breast cancer and poor prognosis.Archives of Pathology and Laboratory Medicine, 138(7): 890-895

https://doi.org/10.5858/arpa.2013-0309-OA

Downloads

Published

15-06-2023

Issue

Section

Articles