Detailed characterization of the Ti-O based thin films obtained by cathodic arc evaporation

Authors

  • Vukoman Jokanović University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča, Serbia + ALBOS d.o.o., Belgrade Author
  • Nenad Bundaleski University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča, Serbia + Universidade Nova de Lisboa, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Lisboa, Portugal Author
  • Božana Čolović University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča, Serbia Author
  • Manuela Ferarra ENEA, Laboratory of Innovative Devices (DTEFSD-DIN), Portici (NA), Italy Author
  • Bojan Jokanović SGL Carbon, Weisbaden, Germany Author
  • Ilija Nasov St. Cyril and Methodius University, Institute of Physics, Faculty for Natural Sciences and Mathematics, Skopje, Republic of North Macedonia + Plasma Doo, Skopje, Republic of North Macedonia Author

DOI:

https://doi.org/10.5937/zasmat2101041J

Keywords:

titanium oxide thin films, XRD, FTIR, SEM, XPS, ellipsometry

Abstract

Physicochemical properties of thin films on the base of titanium oxides, obtained by a cathodic arc evaporation on the surface of glass substrate are analysed in details. The analysis of these films was made by using XRD, FTIR, SEM, XPS analysis and ellipsometry. On the basis of these analyses, particularly analysis obtained by XPS, the oxidative state Ti and corresponding phases are determined through various film layers from the surface to the substrate. The depth of the various levels and their extinction coefficients and refractory indexes are estimated by ellipsometry.

References

Abdel-Aziz, M.M., Yahia, I.S., Wahab, L.A., Fadel, M., Afifi, M.A. (2006) Determination and analysis of dispersive optical constant of TiO2 and Ti2O3 thin films.Applied Surface Science, 252: 8163-8170

https://doi.org/10.1016/j.apsusc.2005.10.040

An, S.M.M., Kumaresan, N., Ramamurthi, K., Sethuraman, K. (2019) Development of pure rutile TiO2TiO2 and Magneli titanium sub-oxide microstructures over titanium oxide-seeded glass substrates using surfactant-free hydrothermal process.Bull. Mater. Sci, 42(20): 127-136

https://doi.org/10.1007/s12034-019-1791-7

Behrisch, R. (1983) Sputtering by Particle Bombardment II: Sputtering of Alloys and Compounds, Electron and Neutron Sputtering, Surface Topography, book. book, 179-229

https://doi.org/10.1007/3-540-12593-0_5

Bendavid, A., Martin, P.J. (2014) Review of thin film materials deposition by the filtered cathodic vacuum arc process at CSIRO.J.Aust.Ceram. Soc, 50: 86-101

Biesinger, M.C., Lau, L.W., Gerson, A.R., Smart, R.C. (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn.Applied Surface Science, 257: 887-898

https://doi.org/10.1016/j.apsusc.2010.07.086

Brydson, R., Sauer, H., Engel, W., Thomass, J.M., Zeitler, E., Kosugi, N., Kuroda, H. (1989) Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: A test of structural sensitivity.J. Phys.: Cond. Matter, 1(4): 131-139

https://doi.org/10.1088/0953-8984/1/4/012

Carp, O., Huisman, C.L., Reller, A. (2004) Photoinduced reactivity of titanium dioxide.Progress in Solid State Chemistry, 32: 33-177

https://doi.org/10.1016/j.progsolidstchem.2004.08.001

de Groot, F.M.F., Grioni, M., Fuggle, J.C., Ghijsen, J., Sawatzky, G.A., Peters, H. (1989) Oxygen 1sx-ray-absorption edges of transition-metal oxides.Physical Review, 40: 5715-5723

https://doi.org/10.1103/PhysRevB.40.5715

Diebold, U. (2003) The surface science of titanium dioxide.Surface Science Reports, 48: 53-229

https://doi.org/10.1016/S0167-5729(02)00100-0

Eiamchai, P., Chindaudom, P., Pokaipisit, A., Limsuwan, P. (2009) A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation.Current Applied Physics, 9: 707-712

https://doi.org/10.1016/j.cap.2008.06.011

Fukushima, J., Takizawa, H. (2018) Size Control of Ti4O7 Nanoparticles by Carbothermal Reduction Using a Multimode Microwave Furnace.Crystals, 8: 444-452

https://doi.org/10.3390/cryst8120444

Hashimoto, S., Tanaka, A. (2002) Alteration of Ti 2p XPS spectrum for titanium oxide by low-energy Ar ion bombardment.Surface and Interface Analysis, 34: 262-265

https://doi.org/10.1002/sia.1296

Jaeger, D., Patscheider, J. (2012) A complete and self-consistent evaluation of XPS spectra of TiN.Journal of Electron Spectroscopy and Related Phenomena, 185: 523-534

https://doi.org/10.1016/j.elspec.2012.10.011

Jokanovic, V., Ferrara, M. (2020) Mendeley Data. 1

Jokanović, V., Čolović, B., Petkovska, A.T., Mraković, A., Jokanović, B., Nenadović, M., Ferrara, M., Nasov, I. (2017) Optical properties of titanium oxide films obtained by cathodic arc plasma deposition.Plasma Sci. Technol, 19: 125504-125513

https://doi.org/10.1088/2058-6272/aa8806

Jokanović, V., Ĉolović, B., Jokanović, B., Stojadinović, S., Trajkovska, A.P., Nasov, I. (2016) Plasmonic metamaterials based on titanium oxides.Mater. Prot, in Serbian, 57: 225-231

https://doi.org/10.5937/ZasMat1602225J

Jokanović, V.R., Colovic, B., Nenadović, M., Trajkovska, P.A., Mitrić, M., Jokanovic, B., Nasov, I. (2016) Ultra-High and Near-Zero Refractive Indices of Magnetron Sputtered Thin-Film Metamaterials Based on TixOy.Adv. Mater. Sci. Eng, 33: 9-16

https://doi.org/10.1155/2016/4565493

Leapman, R.D., Grunes, L.A., Fejes, P.L. (1982) Study of theL23edges in the3dtransition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory.Physical Review B, 26: 614-620

https://doi.org/10.1103/PhysRevB.26.614

Lilja, M., Forsgren, J., Welch, K., Åstrand, M., Engqvist, H., Strømme, M. (2012) Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation.Biotechnology Letters, 34: 2299-2305

https://doi.org/10.1007/s10529-012-1040-2

Lindgren, T., Mwabora, J.M., Avandaño, E., Jonsson, J., Hoel, A., Granqvist, C.G., Lindquist, S.E. (2003) Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering.J.Phys.Chem.B, 107: 5709-5716

https://doi.org/10.1021/jp027345j

Lončarić, M., Sancho-Parramon, J., Zorc, H. (2011) Optical properties of gold island films-a spectroscopic ellipsometry study.Thin Solid Films, 519(9): 2946-2950

https://doi.org/10.1016/j.tsf.2010.12.068

Lu, G., Bernasek, S.L. (2000) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn.J. Schwartz, Surf. Sci, 458: 887-898

Martin, P.J., Mckenzie, D.R., Netterfield, R.P., Swift, P., Filipczuk, S.W., Müller, K.H., Pacey, C.G., James, B. (1987) Characteristics of titanium arc evaporation processes.Thin Solid Films, 153: 91-102

https://doi.org/10.1016/0040-6090(87)90173-8

Möller, W., Eckstein, W., Biersack, J.P. (1988) Tridyn-binary collision simulation of atomic collisions and dynamic composition changes in solids.Computer Physics Communications, 51: 355-368

https://doi.org/10.1016/0010-4655(88)90148-8

Möller, W., Posselt, M. (2002) TRIDYN_FZR User Manual. Dresden, Germany: Forschungszentrum

Oum, K., Lohse, P.W., Klein, J.R., Flender, O., Scholz, M., Hagfeldt, A., Boschloo, G., Lenzer, T. (2013) Photoinduced ultrafast dynamics of the triphenylamine-based organic sensitizer D35 on TiO2, ZrO2 and in acetonitrile.Phys. Chem. Chem. Phys, 15: 3906-3916

https://doi.org/10.1039/c3cp44095h

Patsalas, P., Kalfagiannis, N., Kassavetis, S. (2015) Optical Properties and Plasmonic Performance of Titanium Nitride.Materials, 8(6): 3128-3154

https://doi.org/10.3390/ma8063128

Podshivalova, A.K., Karpov, I.K. (2007) Thermodynamic analysis of the stability of titanium oxides in the TiO-TiO2 range.Russian Journal of Inorganic Chemistry, 52: 1147-1150

https://doi.org/10.1134/S0036023607070273

Popović, M., Potočnik, J., Bundaleski, N., Rakočević, Z. (2017) Instrumental function of the SPECS XPS system.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 398: 48-55

https://doi.org/10.1016/j.nimb.2017.02.071

Ravindra, N.M., Ganapathy, P., Choi, J. (2007) Energy gap-refractive index relations in semiconductors: An overview.Infrared Physics & Technology, 50: 21-29

https://doi.org/10.1016/j.infrared.2006.04.001

Razvan, I., Antoniac, V.I., Cotrut, M.C., Miculescu, F., Eugeniu, V., Munteanu, C., Moldan, D., Niculescu, M. (2014) Potential Solutions to Increase the Corrosion Resistance of Metallic Surgical Instruments Using Different Types of Ceramic Coatings.Key Eng. Mater, 614: 206-211

https://doi.org/10.4028/www.scientific.net/KEM.614.206

Sarkar, A., Khan, G.G. (2019) The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures.Nanoscale, 11(8): 3414-3444

https://doi.org/10.1039/C8NR09666J

Seah, M.P., Nunney, T.S. (2010) Sputtering yields of compounds using argon ions.J. Phys. D. Appl. Phys, 43(25): 3001-3013

https://doi.org/10.1088/0022-3727/43/25/253001

Song, X.F., Hu, L.F., Li, D.H., Chen, L., Sun, Q.Q., Zhou, P., Zhang, D.W. (2015) Electrical level of defects in single-layer two-dimensional TiO2.Scientific Reports, 5: 15989-15995

https://doi.org/10.1038/srep15989

Trigueiro, J., Bundaleski, N., Teodoro, O.M. (2018) Monitoring dynamics of different processes on rutile TiO 2 (110) surface by following work function change.Vacuum, 152: 327-329

https://doi.org/10.1016/j.vacuum.2018.03.049

Vereschaka, A.A., Grigoriev, S.N., Vereschaka, A.S., Popov, A., Batako, A.D. (2014) Nano-scale multilayered composite coatings for cutting tools operating under heavy cutting conditions.Procedia CIRP, Elsevier, 239-244

https://doi.org/10.1016/j.procir.2014.03.070

Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T. (1997) Light-induced amphiphilic surfaces.Nature, 388: 431-432

https://doi.org/10.1038/41233

Wendt, S., Schaub, R., Matthiesen, J., Vestergaard, E.K., Wahlström, E., Rasmussen, M.D., Thostrup, P., Molina, L.M., Laegsgaard, E., Stensgaard, I., Hammer, B., Besenbacher, F. (2005) Oxygen vacancies on TiO2 (1 1 0) and their interaction with H2O and O2: A combined high-resolution STM and DFT study.Surf. Sci, 598: 226-245

https://doi.org/10.1016/j.susc.2005.08.041

Yoshiya, M., Tanaka, I., Kaneko, K., Adachi, H. (1999) First principles calculation of chemical shifts in ELNES/NEXAFS of titanium oxides.Journal of Physics: Condensed Matter, 11(16): 3217-3225

https://doi.org/10.1088/0953-8984/11/16/003

Zhao, Z., Tay, B.K., Yu, G. (2004) Room-temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arc technique.Applied Optics, 43: 1281-1292

https://doi.org/10.1364/AO.43.001281

Zhu, J.Q., Johansson-Jöesaar, M.P., Polcik, P., Jensen, J., Greczynski, G., Hultman, L., Odén, M. (2013) Influence of Ti-Si cathode grain size on the cathodic arc process and resulting Ti-Si-N coatings.Surface and Coatings Technology, 235: 637-647

https://doi.org/10.1016/j.surfcoat.2013.08.042

Downloads

Published

15-03-2021

Issue

Section

Articles