Chloride ion – corrosion activator and passivator

Authors

DOI:

https://doi.org/10.62638/ZasMat1516

Abstract

Brass, an alloy of copper and zinc, is widely used in various industries due to its favorable mechanical properties, good machinability, and corrosion resistance in many environments. However, the presence of certain ions in the environment, particularly chloride ions (Cl-), can significantly affect the corrosion behaviour of this alloy. Chloride ions are known for their ability to disrupt passive layers on the surface of metals and alloys, which can lead to localized corrosion such as pitting and dezincification-selective removal of zinc from the alloy-that can severely compromise its structural integrity. In certain cases, chloride ions may also act as passivators of corrosion processes, depending on their concentration, the composition of the material being tested, and the pH-value of the solution. Therefore, understanding the mechanisms of brass corrosion in the presence of chloride ions is essential for its safe and long-term use, especially in water transport systems, sanitary uquipment, and the marine industry, where these ions are commonly present. This study investigates the factors influencing the intensityand ty pe of brass corrosion in chloride environments, with special emphasis on electrochemical testing methods and the morphology of corrosion products.

Keywords:

brass, corrosion, dezincification, chloride ions
Supporting Agencies
Institute of mining ang metallurgy

References

P.Lapitz, J. Ruzzante, M.G.Alvarez (2007) AE response of α-brass during stress corrosion crack propagation, Corrosion Science, 49, 3812-3825, https://doi.org/10.1016/j.corsci.2007.03.043

W.Li, D.Y.Li (2005) Variations of work function and corrosion behaviors of deformed copper surface, Applied Surface Science, 240, 388-395, https://doi.org/10.1016/j.apsusc.2004.07.017

J.Y.Zou, D.H.Wang,W.Qiu (1997) Solid-state diffusion during the selective dissolution of brass: chronoamperometry and positron annihilation study, Electrochimica Acta,42(11), 1733-1737, https://doi.org/10.1016/S0013-4686(96)00373-8

H.G.Park, G.K.Jung, C.Yun-Mo, J.G.Han, S.H.Ahn, Lee, C.H. (2005) A study on corrosion characterization of plasma oxidized 65/35 brass with various frequencies, Surface and Coatings Technology, 200, 77-82, https://doi.org/10.1016/j.surfcoat.2005.02.152

H. Ma, S.Chen, L.Niu, S.Zhao, S.Li, D.Li (2002), Inhibition of copper corrosion by several Schiff bases aerated halide solutions, J. of Applied Electrochemistry, 32, 65-72, https://doi.org/10.1023/A:1014242112512

H.Račev, S. Stefanova (1982) Spravočnik po korozii, Moskva

G.A.El-Mahdy (2005) Electrochemical impendance study on brass corrosion in NaCl and (NH4)2SO4 solutions during cyclic wet-dry conditions, Journal of Applied Electrochemistry 3, 347-353, https://doi.org/10.1007/s10800-004-8347-1

I.Milošev (2007) The effect of various halide ions on the passivity of Cu, Zn and Cu-xZn alloys in borate buffer, Corrosion Science 49, 637-653, https://doi.org/10.1016/j.corsci.2006.06.009

H.Lu,K.Gao, W.Chu (1998)Determination of tensile stress induced by dezincification layer during corrosion for brass, Corrosion Science Vol.40, No.10, 1663-1670, https://doi.org/10.1016/S0010-938X(98)00063-8

I.K.Marshakov (2005) Corrosion resistance and dezincing of brasses,Protection of Metals Vol.41,No.3, 205-210, https://doi.org/10.1007/s11124-005-0031-2

C. Deslouis, B. Tribollet, G. Mengoli (1988) Electrochemical behaviour of copper in neutral aeratedchloride solution, J.Appl.Electrochem., 18, 374-383, https://doi.org/10.1007/BF01093751

H.P.Lee, K.Nobe (1986) Kinetics and mechanism of Cu electrodissolution in chloride media, J.Electrochem.Soc. 133, 2035, https://doi.org/10.1149/1.2108335

O.E.Barcia, O.R.Mattos, N.Pbere, B.Tribollet (1993) Mass transport studyfor the electrodissolution of copper in 1M Hydrochloric Acid Solution by Impendance, J.Electrochem.Soc. 140(10), 2825, https://doi.org/10.1149/1.2220917

G. Kear, B.D. Barker, Walsh, F.C. (2004) Electrochemical corrosion of unalloyed copper in chloride media-a critical review, Corrosion Science 46, 109-135, https://doi.org/10.1016/S0010-938X(02)00257-3

15.H.Otmačić,E.Stupnišek-Lisac (2003) Copper corrosion inhibitors in near neutral media Electrochimica Acta 48, 985-991, https://doi.org/10.1016/S0013-4686(02)00811-3

H. Otmačić-Čurković, E. Stupnišek-Lisac, H. Takenouti (2010) The influence of pH value on the efficiency of imidazole based corrosion inhibitors of copper, Corros.Sci. 52, 398-405, https://doi.org/10.1016/j.corsci.2009.09.026

R.Winston (2000) Uhlie's Corrosion Handbook, John Wiley and Sons, USA

J.Aromaa, M.Kekkonen, M.Mousapour, A. Jokilaakso, M.Lundström (2021) The oxidation of Copper in Air at Temperatures up to 1000C, Corros.Mater.Degrad. 2(4), 625-640, https://doi.org/10.3390/cmd2040033

J.Choucri, A.Balbo, F.Zanotto, V.Grassi (2021) Corrosion behaviour and Susceptibillity to stress corrosion cracking of Leaded and Lead-Free Brasses in simulated drinking water, Materials, 15(1)144, 1-25, https://doi.org/10.3390/ma15010144

L.G.Vorošnin (1981) Antikorrozionne diffuzionnie pokriti, Minsk

L.Burzynska, A.Maraszewska,Z.Zembura (1996) The corrosion of Cu-47.3at% Zn brass in aerated 1.0M HCl, Corrosion Science 38, 337-347, https://doi.org/10.1016/0010-938X(96)00132-1

S.Torchio (1986) The stress corrosion cracking of admirality brass in sulphate solutions, Corrosion Science 26(2),133-151, https://doi.org/10.1016/0010-938X(86)90042-9

L. Nunez, E. Reguera, F. Corvo, E.Gonzales, C. Vasquez (2005) Corrosion of copper in seawater and its aerosols in a tropical island, Corrosion Science 47, 461-484, https://doi.org/10.1016/j.corsci.2004.05.015

T.P.Hoar, C.J.L.Booker (1965) The electrochemistry of the stress corrosion cracking of alpha brass, Corrosion Science 5, 821-834, https://doi.org/10.1016/S0010-938X(65)80012-9

S.Torchio, F.Mazza (1986) The influence of chloride ions on the stress corrosion cracking of Al-brass in acidic sulphate solutions, Corrosion Science 26(10), 813-823, https://doi.org/10.1016/0010-938X(86)90065-X

Lj.Krstulović,B.Kulušić (1996) Procesi korozije α-mjedi u otopini natrij-klorida i morskoj vodi, Kemijska industrija 45(5),177

A.A.Warraky(1997) Br.Corros.J. 32, 57

S.Tamil Selvi,V.Raman, N.Rajendran (2003) Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium, J.Appl..Electrochem. 33, 1175-1182, https://doi.org/10.1023/B:JACH.0000003852.38068.3f

R.Ravichandran,S.Nanjundan, N.Rajendran (2004) Effect of benzotriazole derivates on the corrosion of brass in NaCl solutions, Applied Surface Science 236, 241-250, https://doi.org/10.1016/j.apsusc.2004.04.025

R.Ravichandran,N.Rajendran (2005) Influence of benzotriazole derivates on the dezincification of 65/35 brass in sodium chloride, Applied Surface Science 239, 182-192, https://doi.org/10.1016/j.apsusc.2004.05.145

R.M.El-Sherif,K.M.Ismail, W.A.Badawy (2004) Effect of Zn and Pb as alloying elements on the electrochemical behavior of brass in NaCl solutions, Electrochimica Acta 49, 5139-5150, https://doi.org/10.1016/j.electacta.2004.06.027

V .L' H stis, C. Dagbert, D. Feron (2003) Electrochemical behavior of metallic materials used in seawater interactions between glucose oxidase and passive layers, Electrochimica Acta 48, 1451-1458, https://doi.org/10.1016/S0013-4686(03)00023-9

Z.Y.Chen, D.Persson,C.Leygraf (2008) Initial NaCl-particle induced atmospheric corrosion of zinc-effect of CO2 and SO2, Corrosion Science 50, 111-123, https://doi.org/10.1016/j.corsci.2007.06.005

E.E.Aabd El (2008) Limits determination of toleration of aggressive anions by a certain passivator on zinc surface, Corrosion Science 50(1), 47-54, https://doi.org/10.1016/j.corsci.2007.06.027

Z.Avramović,M.Antonijević (2004) Corrosion of cold deformed brass in acid sulphate solution, Corrosion Science 46, 2793-2802, https://doi.org/10.1016/j.corsci.2004.03.010

M.Antonijević,Z.Avramović,Z.Gulišija,Č.Lačnjevac (2012) Monografija "Korozija i zaštita materijala", Beograd, 159

Z.Avramović, M.Antonijević, Lj.Avramović, D.Božić, V.Trifunović(2025)The effect of cupric ions on the corrosion behaviour of brass CuZn-42 in an acid environment, Mining & Metallurgy Engineering Bor; 1, 1-10

P.Gao et al.(2021)Evolution of microstructure and electrochemical corrosion behavior of Cu-Zn based alloys after cold rolling, Volume 15, 360-368, https://doi.org/10.1016/j.jmrt.2021.08.035

F.Gan,G.Fuxing,Y.L.Hai (1991)The mechanism of arsenic in inhibiting dezincification of brass,J. Chin. Soc. Corr. Pro. Vol. 11 Issue (1): 75-82

J.Choucri, A.Balbo, F.Zanotto, V.Grassi, M.E. Touhami, I.Mansouri, C.Monticelli (2021)Corrosion Behavior and Susceptibility to Stress Corrosion Cracking of Leaded and Lead-Free Brasses in Simulated Drinking Water, Materials (Basel), 25;15(1):144, https://doi.org/10.3390/ma15010144

R.K.Flatt,P.A.Brook (1971) The effect of anion concentration on the anodic polarization of copper, zinc and brass, Corrosion Science 11, 185, https://doi.org/10.1016/S0010-938X(71)80134-8

M.M. Antonijevic, S.M. Milic, M.B. Radovanovic, M.B. Petrovic and A.T. Stamenkovic (2009) Influence of pH and Chlorides on Electrochemical Behavior of Brass in Presence of Benzotriazole, Int.J.Electrochem.Sci., 4, 1719–1734, https://doi.org/10.1016/S1452-3981(23)15257-6

Y.Zhang, M.Edwards (2011)Effects of pH, chloride, bicarbonate, and phosphate on brass dezincification, American Water Works Association 103(4):90-102, https://doi.org/10.1002/j.1551-8833.2011.tb11438.x

Downloads

Published

09-01-2026

Issue

Section

Research Paper