Lime compositions with polysaccharides for building walls restoration and protection
DOI:
https://doi.org/10.62638/ZasMat1429Abstract
Preserving historical heritage is a significant priority in contemporary urban planning. However, enhancing the durability of lime coatings used in the restoration of cultural heritage sites remains a challenge. This study aims to identify a method for improving the crack resistance of lime-based coatings using polysaccharide additives. The study examines water-soluble modified polysaccharides Atren Cem HV and Atren Cem LV. The maximum adsorption values of these additives on lime were determined, with Atren Cem HV at 1.83 g/g and Atren Cem LV at 1.66 g/g. Findings indicate that the adsorption of polysaccharides onto the surface of Ca(OH)2 lime particles leads to the formation of a composite structure containing inter- and intercrystalline organic molecules, which enhances the crack resistance of the coatings. The research also provides insights into the carbonization process of lime coatings containing polysaccharide additives, revealing that these additives increase the thickness of the carbonized layer. Lime compositions with polysaccharides demonstrate greater cohesive strength due to a high calcite content. Additionally, the formation of a composite structure with organic molecules contributes to a reduction in the elastic modulus and hardness of the coatings. Lime coatings with the Atren Cem LV additive endured 35 cycles of freezing and thawing. Thus, the new findings on lime compositions with polysaccharide additives are crucial for restoring building walls.
Keywords:
lime, polysaccharides, monomolecular adsorption, carbonization, crack resistance, coatingsReferences
C.L.S. Blavier, H.E. Huerto-Cardenas, N. Aste, C. Del Pero, F. Leonforte, S. Della Torre (2023) Adaptive measures for preserving heritage buildings in the face of climate change: A review, Build. Environ. 245,110832. https://doi.org/10.1016/j.buildenv.2023.110832.
S. Bianchi, C. Andriotis, T. Klein, M. Overend (2024) Multi-criteria design methods in façade engineering: State-of-the-art and future trends, Build. Environ. 250,111184. https://doi.org/10.1016/j.buildenv.2024.111184.
S.Pescari, L.Budău, C.–B.Vîlceanu (2023) Rehabilitation and restauration of the main façade of historical masonry building –Romanian National Opera Timisoara, Case Stud. Constr. Mater. 18, e01838. https://doi.org/10.1016/j.cscm.2023.e01838.
A.M.Petrov, R.M.Magomedov, S.V. Savina (2023) Ecological Safety of Construction in the Concept of Sustainable Development, Construction Materials and Products. 6 (1), P. 5 – 17. https://doi.org/10.58224/2618-7183-2023-6-1-5-17.
Z. Valančius, R. Vaickelionienė, G. Vaickelionis, P. Makčinskas (2022) Use of an industrial by-product phosphogypsum in the production of white textured paints, J. Clean. Prod. 380, 134888. https://doi.org/10.1016/j.jclepro.2022.134888.
M.Kharun, S.Klyuev, D.Koroteev, P.C. Chiadighikaobi, R.Fediuk, A.Olisov, N.Vatin, N. Alfimova (2020) Heat treatment of basalt fiber reinforced expanded clay concrete with increased strength for cast-in-situ construction, Fibers. https://doi.org/10.3390/fib8110067.
H.R. de C. Veloso Moura, L.G.Pedroti, M.M. Salgado Lopes, J.M. Franco de Carvalho, J.C. Lopes Ribeiro, J.C.Bernardes Dias (2023) Influence of biocide and dispersant additives on the performance and durability of building paints produced with granite waste, Constr. Build. Mater. 409, 134112. https://doi.org/10.1016/j.conbuildmat.2023.134112.
A.V.Klyuev, N.F.Kashapov, S.V.Klyuev, S.V. Zolotareva, N.A. Shchekina, E.S.Shorstova, R.V. Lesovik (2023) Experimental studies of the proces-ses of structure formation ofcomposite mixtures with technogenic mechanoactivated silica component, Construction Materials and Products. 6, 5–18. https://doi.org/10.58224/2618-7183-2023-6-2-5-18.
M.M.S. Lopes, L.G. Pedroti, A.F. de Oliveira, J.C.L. Ribeiro, J.M. Franco de Carvalho, A. Fiorini de Carvalho, F. de P. Cardoso, G.H. Nalon, G.E.S. de Lima(2021) Optimization of performance of sustainable paints using granite waste through the variation of particle size and pH, J. Clean. Prod. 326, 129418. https://doi.org/10.1016/j.jclepro.2021.129418.
R.S.Fediuk, Y.G. Yevdokimova, A.K.Smoliakov, N.Y.Stoyushko, V.S. Lesovik(2017) Use of geonics scientific positions for designing of building composites for protective (fortification) structures. IOP Conference Series: Materials Science and Engineering. 221(1), 012011. https://doi.org/10.1088/1757-899X/221/1/012011
F. Han, Z. Zhang(2022) Micromechanical properties of 4-year-old composite binder pastes with different mineral admixtures using nanoindentation technique, J. Build. Eng. 61, 105264. https://doi.org/10.1016/j.jobe.2022.105264.
R.S. Fediuk, V.S. Lesovik, A.P. Svintsov, N.A. Gladkova, R.A. Timokhin, et al. (2018) Self-compacting concrete using pretreatmented rice husk ash. Magazine of Civil Engineering. 79(3), pp. 66-76. https://doi.org/10.18720/MCE.79.7
D. Koňáková, V. Pommer, K. Šádková, M. Záleská, M. Böhm, M. Keppert, E. Vejmelková(2024) Heat-resistant composites based on ternary binders with a low cement content: Characterization and performance, Dev. Built Environ. 18, 100400. https://doi.org/10.1016/j.dibe.2024.100400.
S. Klyuev, R. Fediuk, M. Ageeva, E. Fomina, A. Klyuev, E. Shorstova, S. Zolotareva, N. Shchekina, A. Shapovalova, L. Sabitov (2022) Phase formation of mortar using technogenic fibrous materials, Case Stud. Constr. Mater. 16, e01099. https://doi.org/10.1016/j.cscm.2022.e01099.
M.Z.Y. Ting, W. Li, Y. Yi (2023) Two-phase changes in workability of sand-bentonite mixture triggered by seawater and binder during seepage cut-off wall construction in marine environment, Constr. Build. Mater. 401, 132900. https://doi.org/10.1016/j.conbuildmat.2023.132900.
R.Fediuk, R. Timokhin, A. Mochalov, K. Otsokov, I. Lashina (2019) Performance properties of high-density impermeable cementitious paste, Journal of Materials in Civil Engineering. 31(4), 04019013. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002633
J. Krejsová, D. Koňáková, V. Pommer, L. Poláková, R. Černý, J. Maděra, E. Vejmelková (2024) Valorization of waste wood fly ash in environmentally friendly lime-based plasters with enhanced strengths for renovation purposes, J. Build. Eng. 87, 109056. https://doi.org/10.1016/j.jobe.2024.109056.
T.E.S. de Lima, A.R.G. de Azevedo, M.T. Marvila, V.S. Candido, R. Fediuk, S.N. Monteiro (2022) Potential of Using Amazon Natural Fibers to Reinforce Cementitious Composites: A Review Polymers, 14 (3), 647. https://doi.org/10.3390/polym14030647
S. Afzal Basha, A. Vinod Kumar, S. Akhil Tej, C.G. Mohan Babu (2023) Evaluation of zeolite as supplementary cementing material, Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.02.318.
R.Fediuk, A.Yushin (2016) Composite binders for concrete with reduced permeability, IOP Conf. Ser. Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/116/1/012021.
W.R. Wise, S.J. Davis, W.E. Hendriksen, D.J.A. von Behr, S. Prabakar, Y. Zhang (2023) Zeolites as sustainable alternatives to traditional tanning chemistries, Green Chem. 25,4260–4270. https://doi.org/10.1039/D3GC00381G.
R.S. Fediuk, V.S. Lesovik, A. V. Mochalov, K.A. Otsokov, I. V. Lashina, R.A. Timokhin (2018) Composite binders for concrete of protective structures, Mag. Civ. Eng.. https://doi.org/10.18720/MCE.82.19.
E. Koohsaryan, M. Anbia, M. Maghsoodlu (2020) Application of zeolites as non‐phosphate detergent builders: A review, J. Environ. Chem. Eng. 8, 104287. https://doi.org/10.1016/j.jece.2020.104287.
J. Hou, J. Yuan, J. Xu, Y. Fu, C. Meng (2013) Template-free synthesis and characterization of K-phillipsite for use in potassium extraction from seawater, Particuology. 11, 786–788. https://doi.org/10.1016/j.partic.2013.02.003.
H. Luan, Q. Wu, J. Wu, X. Meng, F.-S. Xiao (2024) Templates for the synthesis of zeolites, Chinese J. Struct. Chem. 43, 100252. https://doi.org/10.1016/j.cjsc.2024.100252.
V.I. Loganina, M.V. Frolov, Y.P. Skachkov (2016) Lime composition for the walls of buildings made of aerated concrete, in: Proc. Int. Symp. Mech. Eng. Mater. Sci., Atlantis Press, Paris, France. https://doi.org/10.2991/ismems-16.2016.29.
V. Loganina, I.Pyshkina (2015) Calcareous finishing compounds using fillers on the basis of synthesized hydrosilicates, Bull. South Ural State Univ. Ser. Construction Eng. Archit. 15, 36–39. https://doi.org/10.14529/build150406.
R.S. Fediuk, V.S. Lesovik, Y.L. Liseitsev, R.A. Timokhin, A. V. Bituyev, M.Y. Zaiakhanov, A.V. Mochalov (2019) Composite binders for concretes with improved shock resistance, Mag. Civ. Eng. https://doi.org/10.18720/MCE.85.3.
A. Bakolas, R. Bertoncello, G. Biscontin, A. Glisenti, A. Moropoulou, E. Tondello, E. Zendri (1995) Chemico-Physical Interactions Among the Consti-tuents of Historical Walls in Venice, MRS Proc. 352, 771. https://doi.org/10.1557/PROC-352-771.
A.Bakolas, E.Aggelakopoulou, A. Anagnostopoulou, S.Moropoulou (2006) Evaluation of pozzolanic activity and physico-mechanical characteristics in metakaolin–lime pastes, J. Therm. Anal. Calorim. 84, 157–163. https://doi.org/10.1007/s10973-005-7262-y
C.Genestar, C.Pons (2003) Ancient covering plaster mortars from several convents and Islamic and Gothic palaces in Palma de Mallorca (Spain). Analytical characterisation, J. Cult. Herit. 4, 291–298. https://doi.org/10.1016/j.culher.2003.02.001.
E.R.Littmann (1960) Ancient Mesoamerican Mortars, Plasters, and Stuccos: The Use of Bark Extracts in Lime Plasters, Am. Antiq. 25, 593–597. https://doi.org/10.2307/276642.
D.Magaloni, R.Pancella, Y.Fruh, J.CaÑetas, V. CastaÑo (1995) Studies on The Mayan Mortars Technique, MRS Proc. 352, 483. https://doi.org/10.1557/PROC-352-483.
A.S.Balykov, T.A.Nizina, D.B.Chugunov, N.S. Davydova, V.M. Kyashkin (2025) Photocatalysts based on Zn-Ti layered double hydroxide and its calcination products for selfcleaning concretes: Structure formation and photocatalytic activity. Construction Materials andProducts.8 (1), 2. https://doi.org/10.58224/2618-7183-2025-8-1-2
G.V. Nesvetaev, Yu.I. Koryanova, T.A. Khezhev (2025) Heat dissipation of cement and design the composition of concrete for massive structures. Construction Materials and Products. 8 (1), 3. https://doi.org/10.58224/2618-7183-2025-8-1-3