Study of crystallite size and lattice strain by Williamson-Hall analysis in sintered Al2O3 - Fe2O3 ceramics
DOI:
https://doi.org/10.62638/ZasMat1403Abstract
This study investigates the influence of hematite (Fe₂O₃) as a sintering aid in alumina-based (Al₂O₃) ceramics. Samples with Fe₂O₃ concentrations ranging from 0.5 to 8 wt.% were produced and sintered at 1400 °C. The structural characterization of the samples was carried out using X-ray diffraction (XRD). Crystallite size and lattice strain were calculated by the Debye-Scherrer and Williamson-Hall equations. The results showed that Fe₂O₃ addition fostered crystallite size increase in almost all compositions, leading to a distortion in the Al₂O₃ lattice. Furthermore, the increase in crystallite size resulted in a reduction in dislocation density within the ceramics. This work contributes to a better understanding of the Al₂O₃ – Fe₂O₃ system and its applications in advanced ceramic materials, highlighting the importance of proper composition in ceramics of this compound for optimizing the properties of these materials.
Keywords:
Al2O3, Fe2O3, Crystallite Size, XRD, Williamson-HallReferences
J. Baltazar, M. F. R. P. Alves, C. dos Santos, S. Olhero (2022) Reactive Sintering of Al2O3–Y3Al5O12 Ceramic Composites Obtained by Direct Ink Writing. Ceramics, 5, 1–12. https://doi.org/10.3390/ceramics5010001
P. H. P. M. Da Silveira, T. T. da Silva, M. P. Ribeiro, P. R. R. Jesus, P. C. R. S. Credmann, A. V. Gomes (2021) A Brief Review of Alumina, Silicon Carbide and Boron Carbide Ceramic Materials for Ballistic Applications. Acad. Let., 1–11. http://dx.doi.org/10.20935/al3742
E. Keramat, B. Hashemi (2021) Modelling and optimizing the liquid phase sintering of alumina/CaO–SiO2–Al2O3 ceramics using response surface methodology. Cer. Int., 47, 3159–3172. https://doi.org/10.1016/j.ceramint.2020.09.153
R. M. German, P. Suri, S. J. Park (2009) Review: liquid phase sintering. J. Mat. Sci., 44, 1–39. https://doi.org/10.1007/s10853-008-3008-0
D. Yin, J. Wang, M. Ni, P. Liu, Z. Dong, D. Tang (2021) Fabrication of Highly Transparent Y2O3 Ceramics with CaO as Sintering Aid. Materials, 14, 444. https://doi.org/10.3390/ma14020444
J. W. Lee, J. M. Cha, B. H. Bae, S. W. Choi, H. D. Jung, C. B. Yoon (2021) Effects of using MgO, CaO additives as sintering aid in pressureless sintering of M2Si5N8:Eu2+ (M = Ba, Sr) phosphor ceramics for amber LED automotive applications. J. Alloy. Compd., 858, 157710. https://doi.org/10.1016/j.jallcom.2020.157710
C. Pan, G. Zhao, S. Li, J. Wang, L. Yin, W. Song, et al. (2021) Effect of BaO-2B2O3 sintering aid on the structural and electrical properties of CaBi2Nb2O9 high-temperature piezoelectric ceramic. J. Appl. Phys., 130, 244102. https://doi.org/10.1063/5.0075730
P. H. P. Da Silveira, P. R. R. De Jesus, M. P. Ribeiro, S. N. Monteiro, J. C. S. De Oliveira, A. V. Gomes (2020) Sintering Behavior of AL2O3 Ceramics Doped with Pre-Sintered NB2O5 and LiF. Mat. Sci. For., 1012, 190–195. https://doi.org/10.4028/www.scientific.net/MSF.1012.190
K. Shan, R. Li, J. Liu (2022) Ultra-high creep resistant SiC ceramics prepared by rapid hot pressing. J. Eur. Cer. Soc., 42, 1815–1821. https://doi.org/10.1016/j.jeurceramsoc.2021.11.010
C. Zhang, S. Qu, W. Xi, Y. Liang, J. Zhao, T. Yu (2022) Ultra-high creep resistant SiC ceramics prepared by rapid hot pressing. Cer. Int., 48, 26269–26277. https://doi.org/10.1016/j.ceramint.2022.02.090
N. C. De Carvalho, J. J. De Sousa Melo, F. H. S. Sales (2022) Medidas Elétricas e Dielétricas em Cerâmicas de BaTiO3 Dopadas com SiO2 e Bi2O3 / Electrical and Dielectric Measurements in SiO2 and Bi2O3 doped BaTiO3 Ceramics. Braz. J. Dev., 8, 6871–6899. https://doi.org/10.34117/bjdv8n1-464
A. V. Gomes, É. Lima Jr, P. R. R. De Jesus, L. F. C. Nascimento, J. L. Dos Santos, S. N. Monteiro, et al. (2020) Novel Alumina Compounds with Niobia, Silica and Magnesia for Ballistic Armor Mat. Sci. For., 1012, 196–201. https://doi.org/10.4028/www.scientific.net/MSF.101.196
H. P. Corado, P. H. Silveira, V. L. Ortega, G. G. Ramos, C. N. Elias (2022) Flexural Strength of Vitreous Ceramics Based on Lithium Disilicate and Lithium Silicate Reinforced with Zirconia for CAD/CAM. Int. J. Biomater., 1–9. https://doi.org/10.1155/2022/5896511
J. Hu, H. Li, S. Chen, W. Xiang (2022) Enhanced Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Steam Reforming of Methane with Different Mg Ratios. Ind. Eng. Chem. Res., 61, 1022–1031. https://doi.org/10.1021/acs.iecr.1c03933
Y. Jiang, Q. Mao, T. Ma, X. Liu, Y. Li, S. Ren (2021) Facile preparation of Fe2O3 Al2O3 composite with excellent adsorption properties towards Congo red. Cer. Int., 47, 13884–13894. https://doi.org/10.1016/j.ceramint.2021.01.255
L. Liu, M. R. Zachariah (2013) Enhanced Performance of Alkali Metal Doped Fe2O3 and Fe2O3/Al2O3 Composites As Oxygen Carrier Material in Chemical Looping Combustion. Energ. Fuel., 27, 4977–4983. https://doi.org/10.1021/ef400748x
P. H. P. M. da Silveira, A. E. Eltom, N. V. Le Sénéchal, J. L. dos Santos, A. V. Gomes, M. H. P. da Silva (2025) Evaluation of the Effect of Fe2O3 as a Sintering Additive on Densification, Microstructure, and Thermal Stability of Al2O3. Adv. Mat. Sustain. Manuf., 2(1), 10005. https://doi.org/10.70322/amsm.2025.10005
Z. Ma, G. Liu, Y. Lu, H. Zhang (2022) Redox performance of Fe2O3/Al2O3 oxygen carrier calcined at different temperature in chemical looping process. Fuel, 310, 122381. https://doi.org/10.1016/j.fuel.2021.122381
Abyzov (2019) Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3. Refract. Ind. Cer., 60, 24–32. https://doi.org/10.1007/s11148-019-00304-2
P. Bercoff, H. Bertorello (2010) Magnetic properties of hematite with large coercivity. Appl. Phys. A, 100, 1019–1027. https://doi.org/10.1007/s00339-010-5983-7
A. Muan (1958) On the Stability of the Phase Fe2O3 .Al2O3 Am. J. Sci., 256, 413–422. https://doi.org/10.2475/ajs.256.6.413
A. Muan, C. Gee (1956) Phase Equilibrium Studies in the System Iron Oxide- A12O3 in Air and at 1 Atm. O2 Pressure. J. Am. Cer. Soc., 39, 207–214. https://doi.org/10.1111/j.1151-2916.1956.tb15647.x
R. Dayal, J. Gard, F. Glasser (1965) Crystal data on FeAlO3. Acta Crystallogr., 18, 574–575. https://doi.org/10.1107/s0365110x65001329
Feenstra, S. Sämann, B. Wunder (2005) An experimental study of Fe-Al solubility in the system corundum-hematite up to 40 kbar and 1300 °C. J. Petrol., 46, 1881–1892. http://doi.org/10.1093/petrology/egi038
L. Dreval, T. Zienert, O. Fabrichnaya (2016) Calculated phase diagrams and thermodynamic properties of the Al2O3–Fe2O3–FeO system. J. Alloy. Compd., 657, 192–214. https://doi.org/10.1016/j.jallcom.2015.10.017
Y. Q. Cai, Z. F. Wang, L. X. Yu, J. L. Bu, R. L. Wang, R. S. Wang (2011) Effect of Molar Ratio of MgO/Al2O3 on the Performance of MgO-Al2O3-Fe2O3 Composite. Adv. Mat. Res., 284–286, 242–245.https://doi.org/10.4028/www.scientific.net/AMR284-286.242
P. H. P. Silveira, A. E. Eltom, A. V. Gomes, M. H. P. Silva (2024) Sintering behavior, phase formation, physical and mechanical properties of Al2O3 – Nb2O5 ceramics produced by pressureless sintering using Fe2O3 as sintering aid. Mat. Let., 359, 135966. https://doi.org/10.1016/j.matlet.2024.135966
P. H. P. M. Silveira, A. E. Eltom, J. L. Santos, G. C. G. Delaqua, C. M. F. Vieira, P. R. R. Jesus, M. H. P. Silva, A. V. Gomes (2024) Addition of hematite as a sintering aid in alumina: effect of concentration on physical, microstructural and mechanical properties. Tecnol. Met. Mat Min., 21, 2978. http://dx.doi.org/10.4322/2176-1523.20242978
Himabindu, N. S. M. P. Latha, B. R. Kanth (2021) Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review. Mater. Today: Proc., 47, 4891–4896. https://doi.org/10.1016/j.matpr.2021.06.256
J. S. Lim, F. K. Yam (2025) Structural parameters of CVD synthesized Ga2O3 nanostructures from X-ray diffraction analysis derived by Scherrer, Williamson-Hall, Size-Strain Plot and Halder-Wagner methods–A comparative study. Physica B Condens. Matter, 699, 416798. https://doi.org/10.1016/j.physb.2024.416798
Q. Huang, C. Wang, Z. Zhou, J. Peng, Q. Shan (2025) Stress quantification in textured materials considering anisotropic crystal orientation via X-ray diffraction. Mater. Sci. Eng. A, 920, 147545. https://doi.org/10.1016/j.msea.2024.147545
M. K. Alam, M. S. Hossain, N. M. Bahadur, S. Ahmed (2024) A comparative study in estimating of crystallite sizes of synthesized and natural hydroxyapatites using Scherrer Method, Williamson-Hall model, Size-Strain Plot and Halder-Wagner Method. J. Mol. Struc., 1306,137820. https://doi.org/10.1016/j.molstruc.2024.137820
Z. Cao, M. Qin, B. Jia, Y. Gu, P. Chen, A. A. Volinsky, X. Qu (2015) One pot solution combustion synthesis of highly mesoporous hematite for photocatalysis. Cer. Int., 41, 2806–2812. https://doi.org/10.1016/j.ceramint.2014.10.100
T. Kawasaki, T. Adachi, H. Ohfuji, Y. Osanai (2019) FeAlO3 under ultrahigh–temperature metamorphic conditions: Experimental evidence from the sillimanite–Fe2O3 and sillimanite–Fe3O4 systems. J. Miner. Petrol. Sci., 114, 238–251. https://doi.org/10.2465/jmps.190509
R. Saha, A. Shireen, S. N. Shirodkar, U. V. Waghmare, A. Sundaresan, C. N. R. Rao (2012) Multiferroic and magnetoelectric nature of GaFeO3, AlFeO3 and related oxides. Solid State Commun., 152, 1964–1968. https://doi.org/10.1016/j.ssc.2012.07.018
Bhushan, S. Mukherjee, A. Basumallick, S. K. Bandopadhyay, D. Das (2008) Low temperature route to the multiferroic FeAlO3: XRD and Mössbauer characterizations. Hyperfine Interact., 187,101–107.https://doi.org/10.1007/s10751-008-9889-0
N. S. Ramgir, Y. K. Hwang, I. S. Mulla, J. S. Chang (2006) Effect of particle size and strain in nanocrystalline SnO2 according to doping concentration of ruthenium. Solid State Sci., 8, 359–362. https://doi.org/10.1016/j.solidstatesciences.2006.02.008
Y. Liao (2006) Practical Electron Microscopy and Database, S.L.: S.L.