Investigation of structural, optical and emission properties of SnO2 nanoparticles by thermal decomposition method

Authors

DOI:

https://doi.org/10.62638/ZasMat1331

Abstract

SnO2 nanoparticles were synthesized by thermal decomposition technique by varying the temperature from 300°C to 600°C. The synthesized nanoparticles (9 nm) were of rutile (tetragonal) phase with orientation along [110], [101], [200], [211], [220], [310], [112], [301], [202] crystal planes. The peak intensity of the crystal planes become prominent with increase in decomposition temperature while the impurity phases diminish. The crystallite size and micro strain of the nanoparticle was calculated using William Hall equation with union deformation model. SnO2 nanoparticles synthesized at 600°C shows a positive strain of
0.3571x10-3 indicating lattice expansion. At thermal decomposition of 5000C the sample has maximum transparency with band gap at ~ 4.19 eV and has broad emission in blue region of the EM Spectra with high intensity (5 x105 counts), rendering it to be a suitable material for blue light LED.

Keywords:

Thermal decomposition method , SnO2 Nanoparticles , Tin (II) chloride dihydrate

References

G.H.Patel, S.H.Chaki, R.M.Kannaujiya, Z.R. Parekh, A.B.Hirpara (2021) Sol-gel synthesis and thermal characterization of SnO2 nanoparticles. Physica B: Condensed Matter, 613,412987 https://doi.org/10.1016/j.physb.2021.412987

S.G. Onkar, F.C.Raghuwanshi, D.R.Patil, T. Krishnakumar (2020) Synthesis, characterization and gas sensing study of SnO2 thick film sensor towards H2S, NH3, LPG and CO2.Materials Today Proceedings, 23,190–201 https://doi.org/10.1016/j.matpr.2020.02.017

S. Lopez-Moreno, A.H.Romero, J. Mejia-Lopez, A.Munoz (2016) First-Principles Study of Pressure-Induced Structural Phase Transitions in MnF2.Physical Chemistry Chemical Physics,18(48), 33250−33263 https://doi.org/10.1039/C6CP05467F

I. Erdem, H. H. Kart, T.Cagin (2014) High Pressure Phase Transitions in SnO2 Polymorphs by First-Principles Calculations. Journal of Alloys and Compounds, 587, 638−645 https://doi.org/10.1016/j.jallcom.2013.10.238

D.Mohanta, M. Ahmaruzzaman (2016) Tin Oxide Nanostructured Materials: An Overview of Recent Developments in Synthesis, Modifications and Potential Applications. RSC Advances, 6(112),110996−111015, https://doi.org/10.1039/C6RA21444D

J. Chao, D. Zhang, S. Xing, Y. Chen, W.Shen (2018) Controllable Assembly of Tin Oxide Thin Films with Efficient Photoconductive Activity. Materials Letters, 229, 244−247, https://doi.org/10.1016/j.matlet.2018.07.027

Q. Wang, N. Yao, D. An, Y. Li, Y.Zou (2016) Enhanced gas sensing properties of hierarchical SnO2nanoflower assembled from nanorods via a one-pot template-free hydrothermal method. Ceramics International,42,15889–15896, https://doi.org/10.1016/j.ceramint.2016.07.062

J. Hu, X. Li, X. Wang, Y. Li, Q. Li (2018) Hierarchical aloe-like SnO2nanoflowers and their gas sensing properties.Journal of Materials Research, 33, 1433–1441, https://doi.org/10.1557/jmr.2018.94

Y.Zeng,Y. Wang, L.Qiao, Y. Bing,B.Zou (2016) Synthesis and the improved sensing properties of hierarchical SnO2 hollow nanosheets with mesoporous and multilayered interiors. Sensors and Actuators B:Chemical, 222,354–361, https://doi.org/10.1016/j.snb.2015.08.068

G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang (2019) Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivityfor detecting formaldehyde and acetone. Sensorsand Actuators B: Chemical,283,590–601, https://doi.org/10.1016/j.snb.2018.09.117

Z. U.Abideen, J. H. Kim, S. S. Kim (2017) Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties. Sensors and Actuators B: Chemical, 238,374–380, https://doi.org/10.1016/j.snb.2016.07.054

D. Varshney, K. Verma (2013) Effect of stirring time on size and dielectric properties of SnO2 nanoparticles prepared by co-precipitation method. Journal of Molecular Structure, 1034,216-222, https://doi.org/10.1016/j.molstruc.2012.10.049

M.Akram, A. T.Saleh, W. A. Wan Ibrahim, A. S.Awan, R.Hussain (2016) Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: effect of precursor concentration. Ceramics International, 42, 8613–8619 https://doi.org/10.1016/j.ceramint.2016.02.092

A. S.Ahmed, A.Azam, M.Shafeeq M, M.Chaman, S.Tabassum (2012) Temperature-dependent structural and optical properties of tin oxide nanoparticles. Journal of Physics and Chemistry of Solids, 73,943–947 https://doi.org/10.1016/j.jpcs.2012.02.030

A. Lemarchand, F.Remondiere, J.Jouin, P. Thomas, O. Masson (2020) Crystallization pathway of size-controlled SnO2 nanoparticles synthesized via a nonaqueoussol-gel route. Crystal Growth Design,20,1110–1118 https://doi.org/10.1021/acs.cgd.9b01428

S. Das, S.Kar, S.Chaudhuri (2006) Optical properties of SnO2 nanoparticles and nanorod synthesized by solvothermal process. Journal of Applied Physics, 99,114–303 https://doi.org/10.1063/1.2200449

M.A.M.Akhir,K. Mohamed, Lee. H.L, S. A.Rezan (2016) Synthesis of tin oxide nanostructures using hydrothermal method and optimization of its crystal size by using statistical design of experiment. Procedia Chemistry, 19,993–998 https://doi.org/10.1016/j.proche.2016.03.148

A. Srivastava, S.T.Lakshmikumar, A.K. Srivastava, Rashmi, K. Jain (2007) Gas sensing properties of nanocrystallineSnO2 prepared in solvent media using a microwave-assisted technique.Sensors and Actuators B:Chemical, 126,583–7 https://doi.org/10.1016/j.snb.2007.04.006

M.Sathishkumar, S.Geethalakshmi (2019) Enhanced photocatalytic and antibacterial activity of Cu:SnO2 nanoparticles synthesized by microwave assisted method. Materials Today: Proceedings, 20,54-63, https://doi.org/10.1016/j.matpr.2019.08.246

M.Parthibavarman, K.Vallalperuman, S. Sathishkumar, M. Durairaj & K.Thavamani (2013) A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. Journal of Materials Science: Materials in Electronics,25(2),730–735, https://doi.org/10.1007/s10854-013-1637-9

M. Aziz, S. S. Abbas, W. R. W.Baharom, W. Z. W. Mahmud (2012) Structure of SnO2 nanoparticles by sol-gel method. Materials Letters, 74, 62–64, https://doi.org/10.1016/j.matlet.2012.01.073

N.Talebian, F.Jafarinezhad (2013)Morphology- controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceramics International, 39(7), 8311–8317 https://doi.org/10.1016/j.ceramint.2013.03.101

R.A.Gaashani, S.Radiman, N.Tabet, A.R.Daud (2012) Optical properties of SnO2 nanostructures prepared via one-step thermal decomposition of tin (II) chloride dihydrate. Materials Science and Engineering: B, 177(6), 462–470 https://doi.org/10.1016/j.mseb.2012.02.006

L. Song, B. Zhao, X.Ju, L.Liu,Y. Gong (2020) Comparative study of methanol gas sensing performance for SnO2 nanostructures by changing their morphology. Materials Science in Semiconductor Processing, 111, 104986 https://doi.org/10.1016/j.mssp.2020.104986

E. T. H Tan, G. W. Ho, A. S. W Wong, S. Kawi, A. T. S Wee (2008) Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method. Nanotechnology,19, 255706 https://doi.org/10.1088/0957-4484/19/25/255706

A. Liu, M. Zhu, B. Dai (2019) A novel high-performance SnO2 catalyst for oxidative desulfurization under mild conditions. Applied Catalysis A: General, 583, 117134 https://doi.org/10.1016/j.apcata.2019.117134

D. H. Kim, S. Y. Kim, S. W.Han,Y. K. Cho, M.-G.Jeong (2015) The catalytic stability of TiO2-shell/Ni-core catalysts for CO2 reforming of CH4.Applied Catalysis A: General,495, 184–191 https://doi.org/10.1016/j.apcata.2015.02.015

Y. Chen, Q.Meng, L. Zhang, C. Han, H.Gao (2019) SnO2-based electron transporting layer materials for perovskite solar cells: a review of recent progress. Journal of Energy Chemistry, 35, 144–167, https://doi.org/10.1016/j.jechem.2018.11.011

S.Tazikeh, A.Akbari, A.Talebi, E.Talebi (2014) Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method. Materials Science-Poland, 32(1), 98–101, https://doi.org/10.2478/s13536-013-0164-y

V.Agrahari, M. C.Mathpal, M. Kumar,A. Agarwal (2015) Investigations of optoelectronic properties in DMSSnO2nanoparticles.Journal of Alloys and Compounds, 622, 48–53 https://doi.org/10.1016/j.jallcom.2014.10.009

V. H. Tran, R.B.Ambade, S.B.Ambade, S.H. Lee, I. H. Lee (2017) Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells. ACS Applied Materials & Interfaces, 9(2),1645–1653 https://doi.org/10.1021/acsami.6b10857

Y. Liu, S. Wei, G. Wang, J. Tong, J. Li (2020) Quantum Sized SnO2 Nanoparticles with Up-Shifted Conduction Band: A Promising Electron Transportation Material for Quantum Dot Light-Emitting Diode. Langmuir, 36 (23),6605–6609

https://doi.org/10.1021/acs.langmuir.0c00107

V.Vasanthi, M.Kottaisamy, K.Anitha, V. Ramakrishnan (2018)Yellow emitting Cd doped SnO2 nanophosphor for phosphor converted white LED applications. Materials Sciencein Semiconductor Processing, 85, 141–149 https://doi.org/10.1016/j.mssp.2018.06.001

S.P.S. Porto, P.A.Fleury,T.C.Damen (1967) Raman Spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Physical Reviews Journal Archive, 154, 522 https://doi.org/10.1103/PhysRev.154.522

J. G. Traylor, H. G. Smith, R. M. Nicklow, M. K. Wilkinson (1971) Lattice dynamics of Rutile. Physical Review B 3, 3457 https://doi.org/10.1103/PhysRevB.3.3457

M. H. Kuok , L. H. Lim (1990) Temperature-dependent Raman study of tin (II) chloride. Journal of Raman Spectroscopy,21, 675-677, https://doi.org/10.1002/jrs.1250211007

J.Geurts, S. Rau, W. Richter, F. J.Schmitte (1984) SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies. Thin Solid Films, 121, 217-225 https://doi.org/10.1016/0040-6090(84)90303-1

K. Murali Krishna, M. Sharon, M. K. Mishra, V. R. Marathe (1996) Selection of optimal mixing ratios to obtain suitable photoelectrodes from mixed semiconductors using band gap calculations. ElectrochimicaActa, 41, 1999-2004 https://doi.org/10.1016/0013-4686(96)00004-7

L.Sangaletti, L. E. Depero, B.Allieri, F.Pioselli, E.Comini (1998) Oxidation of Sn Thin Films to SnO2. Micro-Raman Mapping and X-ray Diffraction Studies. Journal of Materials Research, 13,2457-2460 https://doi.org/10.1557/JMR.1998.0343

R. S.Zeferino, U.Pal, R.Melendrez, H.A.Duran-Munoz, M.B.Flores (2013) Dose enhancing behavior of hydrothermally grown Eu-doped SnO2 nanoparticles. Journal of Applied Physics, 113,064306-6, https://doi.org/10.1063/1.4790486

K. Dutta, S.K.De (2007) Optical and nonlinear electrical properties of SnO2–polyaniline nanocomposites. Materials Letters, 61, 4967–4971 https://doi.org/10.1016/j.matlet.2007.03.086

G.Zhong, M.Liu (1999) Preparation of nanostructured tin oxide using a sol–gel process based on tin tetrachloride and ethylene glycol. Journal of Materials Science, 34, 3213–3219 https://doi.org/10.1023/A:1004685907751

S.D. Monredon, A.Cellot, F.Ribot, C. Sanchez, L.Armelao (2002) Synthesis and characterization of crystalline tin oxide nanoparticles. Journal of Materials Chemistry, 12, 2396– 2400 https://doi.org/10.1039/B203049G

M. A.Farrukh, B.T.Heng, R. Adnan (2010) Surfactant controlled aqueous synthesis of SnO2nanoparticles via the hydrothermal and conventional heating methods. Turkish Journal of Chemistry, 34, 537–550 https://doi.org/10.3906/kim-1001-466

S.Sambasivam, D.P.Joseph, J.H.Jeong, B.C. Choi, K.T.Lim (2011) Anti-ferromagnetic interactions in Er-doped SnO2 DMS nanoparticles. Journal of Nanoparticle Research, 13, 4623-4630 https://doi.org/10.1007/s11051-011-0426-8

K. N Yu, Y. Xiong, Y. Liu, C. Xiong (1997) Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Physical Review B, 55(4), 2666–2671 https://doi:10.1103/PhysRevB.55.2666.

Powder Diffraction File. Data Cards. Inorganic Section. JCPDS, Swarthmore, Pennsylvania, USA, 1987, 21–1250 https://doi.org/10.1017/s0885715600012537

K.N. Yu, Y. Xiong, Y. Lin, G. Xiong (1997) Microstructural change of nano-SnO2 grain assemblages with the annealing temperature. Phys. Rev. B, 55, 2666–2671 https://doi.org/10.1103/PhysRevB.55.2666

V. V. Kissine, S. A. Voroshilov, V. V. Sysoev (1999) Oxygen flow effect on gas sensitivity properties of tin oxide film prepared by r.f. sputtering. Sensors and Actuators B, 55(1), 55–59 https://doi:10.1016/s0925-4005(99)00022-2

V. D. Mote, Y.Purushotham, B. N. Dole (2012) Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(1), 1-8 https://doi.org/10.1186/2251-7235-6-6

A. K. Zak, W.H. Abd. Majid, M.E. Abrishami, R. Yousefi (2011) X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 13(1), 251–256, https://doi.org/10.1016/j.solidstatesciences.2010.11.024

S.Sarkar, R. Das (2018) Shape effect on the elastic properties of Ag nanocrystals. Micro & Nano Letters, 13 (3),312–315 https://doi.org/10.1049/mnl.2017.0349

V. S. Jahnavi, S.K. Tripathy, A. V. N. Ramalingeswara Rao (2020) Study of the Structural, Optical, Dielectric, and Magnetic Properties of Copper-Doped SnO2 Nanoparticles. Journal of Electronic Materials, 49, 3540-3554 https://doi:10.1007/s11664-020-08028-7

K. Manikandan, S. Dhanuskodi, A.R. Thomas, N.Maheswari, G. Muralidharan, D. Sastikumar (2016) Size–strain distribution analysis of SnO2 nanoparticles and their multifunctional applications as fiber optic gas sensors, supercapacitors, and optical limiters. RSC Advances, 6(93),90559–90570 https://doi:10.1039/c6ra20503h

M. K. Singh, M. C.Mathpal, A.Agarwal (2012) Optical properties of SnO2dots synthesized by laser ablation in liquid. Chemical Physics Letters, 536, 87-91 https://doi.org/10.1016/j.cplett.2012.03.084

C. Wang, M.Ge, J.Z.Jiang (2010) Magnetic behavior of SnO2 nanosheets at room temperature. Applied Physics Letters, 97, 042510-042510-3 https://doi.org/10.1063/1.3473764

G. A. Alanko, A. Thurber, C. B. Hanna, A. Punnoose (2012) Size, surface structure, and doping effects on ferromagnetism in SnO2. Journal of Applied Physics, 111, 07C321 https://doi.org/10.1063/1.3679455

P. Wu, B. Zhou, W. Zhou (2012) Room-temperature ferromagnetism in epitaxial Mg-doped SnO2 thin films. Applied Physics Letters,100,1824051-4, https://doi.org/10.1063/1.4711220

S.J.Liu, C.Y.Liu, J.Y.Juang, H.W.Fang (2009) Room-temperature ferromagnetism in Zn and MncodopedSnO2 films. Journal of Applied Physics,105,013928-1-013928-4, https://doi.org/10.1063/1.3056374

H.Kimura, T.Fukumura, M.Kawasaki, K.Inaba, T.Hasegawa (2002) Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Applied Physics Letters, 80,94-96 https://doi.org/10.1063/1.1430856

S. K. Misra, S. I. Andronenko, K.M.Reddy, J.Hays, A.Punnoose (2006) Magnetic resonance studies of Co2+ ions in nanoparticles of SnO2 processed at different temperatures. Journal of Applied Physics, 99, 08M106, https://doi.org/10.1063/1.2165146

K. M. Lee, D.J. Lee, H.Ahn (2004) XRD and TEM studies on tin oxide (II) nanoparticles prepared by inert gas condensation. Materials Letters,58,3122 – 3125, https://doi.org/10.1016/j.matlet.2004.06.002

S.Das, S.Kar, S.Chaudhuri (2006) Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. Journal of Applied Physics, 99,114303-114309 https://doi.org/10.1063/1.2200449

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 79,7983-7990 https://doi.org/10.1063/1.362349

Downloads

Published

23-07-2025

Issue

Section

Research Paper