Investigation of structural, optical and emission properties of SnO2 nanoparticles by thermal decomposition method

Authors

DOI:

https://doi.org/10.62638/ZasMat1331

Abstract

SnO2 nanoparticles were synthesized by thermal decomposition technique by varying the temperature from 300°C to 600°C. The synthesized nanoparticles (9 nm) were of rutile (tetragonal) phase with orientation along [110], [101], [200], [211], [220], [310], [112], [301], [202] crystal planes. The peak intensity of the crystal planes become prominent with increase in decomposition temperature while the impurity phases diminish. The crystallite size and micro strain of the nanoparticle was calculated using William Hall equation with union deformation model. SnO2 nanoparticles synthesized at 600°C shows a positive strain of
0.3571x10-3 indicating lattice expansion. At thermal decomposition of 5000C the sample has maximum transparency with band gap at ~ 4.19 eV and has broad emission in blue region of the EM Spectra with high intensity (5 x105 counts), rendering it to be a suitable material for blue light LED.

Keywords:

Thermal decomposition method , SnO2 Nanoparticles , Tin (II) chloride dihydrate

References

Patel, G. H., Chaki, S. H., Kannaujiya, R. M., Parekh, Z. R., & Hirpara, A. B. (2021).

Sol–gel synthesis and thermal characterization of SnO₂ nanoparticles. Physica B: Condensed Matter, 613, 412987.

https://doi.org/10.1016/j.physb.2021.412987

Onkar, S. G., Raghuwanshi, F. C., Patil, D. R., & Krishnakumar, T. (2020).

Synthesis, characterization and gas sensing study of SnO₂ thick film sensors toward H₂S, NH₃, LPG, and CO₂. Materials Today: Proceedings, 23, 190–201.

https://doi.org/10.1016/j.matpr.2020.02.017

Lopez-Moreno, S., Romero, A. H., Mejia-Lopez, J., & Muñoz, A. (2016).

First-principles study of pressure-induced structural phase transitions in MnF₂. Physical Chemistry Chemical Physics, 18(48), 33250–33263.

https://doi.org/10.1039/C6CP05467F

Erdem, I., Kart, H. H., & Çağın, T. (2014).

High-pressure phase transitions in SnO₂ polymorphs by first-principles calculations. Journal of Alloys and Compounds, 587, 638–645.

https://doi.org/10.1016/j.jallcom.2013.10.238

Mohanta, D., & Ahmaruzzaman, M. (2016).

Tin oxide nanostructured materials: Recent developments in synthesis, modification, and applications. RSC Advances, 6(112), 110996–111015.

https://doi.org/10.1039/C6RA21444D

Chao, J., Zhang, D., Xing, S., Chen, Y., & Shen, W. (2018).

Controllable assembly of tin oxide thin films with efficient photoconductive activity. Materials Letters, 229, 244–247.

https://doi.org/10.1016/j.matlet.2018.07.027

Wang, Q., Yao, N., An, D., Li, Y., & Zou, Y. (2016).

Enhanced gas sensing properties of hierarchical SnO₂ nanoflowers assembled from nanorods. Ceramics International, 42, 15889–15896.

https://doi.org/10.1016/j.ceramint.2016.07.062

Hu, J., Li, X., Wang, X., Li, Y., & Li, Q. (2018).

Hierarchical aloe-like SnO₂ nanoflowers and their gas sensing properties. Journal of Materials Research, 33, 1433–1441.

https://doi.org/10.1557/jmr.2018.94

Zeng, Y., Wang, Y., Qiao, L., Bing, Y., & Zou, B. (2016).

Hierarchical SnO₂ hollow nanosheets with mesoporous multilayered interiors for gas sensing. Sensors and Actuators B: Chemical, 222, 354–361.

https://doi.org/10.1016/j.snb.2015.08.068

Li, G., Cheng, Z., Xiang, Q., Yan, L., & Wang, X. (2019).

PdAu-decorated SnO₂ nanosheets for temperature-dependent dual-selective gas sensing. Sensors and Actuators B: Chemical, 283, 590–601.

https://doi.org/10.1016/j.snb.2018.09.117

Abideen, Z. U., Kim, J. H., & Kim, S. S. (2017).

Optimization of metal nanoparticle loading on SnO₂ nanowires for superior gas sensing. Sensors and Actuators B: Chemical, 238, 374–380.

https://doi.org/10.1016/j.snb.2016.07.054

Varshney, D., & Verma, K. (2013).

Effect of stirring time on size and dielectric properties of SnO₂ nanoparticles. Journal of Molecular Structure, 1034, 216–222.

https://doi.org/10.1016/j.molstruc.2012.10.049

Akram, M., Saleh, A. T., Ibrahim, W. A. W., Awan, A. S., & Hussain, R. (2016).

Continuous microwave flow synthesis of nano-sized SnO₂. Ceramics International, 42, 8613–8619.

https://doi.org/10.1016/j.ceramint.2016.02.092

Ahmed, A. S., Azam, A., Shafeeq, M., Chaman, M., & Tabassum, S. (2012).

Temperature-dependent structural and optical properties of SnO₂ nanoparticles. Journal of Physics and Chemistry of Solids, 73, 943–947.

https://doi.org/10.1016/j.jpcs.2012.02.030

Lemarchand, A., Remondière, F., Jouin, J., Thomas, P., & Masson, O. (2020).

Crystallization pathway of size-controlled SnO₂ nanoparticles via a non-aqueous sol–gel route. Crystal Growth & Design, 20, 1110–1118.

https://doi.org/10.1021/acs.cgd.9b01428

Das, S., Kar, S., & Chaudhuri, S. (2006).

Optical properties of SnO₂ nanoparticles and nanorods synthesized by solvothermal process. Journal of Applied Physics, 99, 114303.

https://doi.org/10.1063/1.2200449

Akhir, M. A. M., Mohamed, K., Lee, H. L., & Rezan, S. A. (2016).

Hydrothermal synthesis of SnO₂ nanostructures and crystal size optimization. Procedia Chemistry, 19, 993–998.

https://doi.org/10.1016/j.proche.2016.03.148

Srivastava, A., Lakshmikumar, S. T., Srivastava, A. K., Rashmi, & Jain, K. (2007).

Gas sensing properties of nanocrystalline SnO₂ synthesized by microwave-assisted technique. Sensors and Actuators B: Chemical, 126, 583–587.

https://doi.org/10.1016/j.snb.2007.04.006

Sathishkumar, M., & Geethalakshmi, S. (2019).

Enhanced photocatalytic and antibacterial activity of Cu-doped SnO₂ nanoparticles. Materials Today: Proceedings, 20, 54–63.

https://doi.org/10.1016/j.matpr.2019.08.246

Parthibavarman, M., Vallalperuman, K., Sathishkumar, S., Durairaj, M., & Thavamani, K. (2013).

Microwave synthesis of nanocrystalline SnO₂. Journal of Materials Science: Materials in Electronics, 25(2), 730–735.

https://doi.org/10.1007/s10854-013-1637-9

Aziz, M., Abbas, S. S., Baharom, W. R. W., & Mahmud, W. Z. W. (2012).

Structure of SnO₂ nanoparticles synthesized by sol–gel method. Materials Letters, 74, 62–64.

https://doi.org/10.1016/j.matlet.2012.01.073

Talebian, N., & Jafarinezhad, F. (2013).

Morphology-controlled synthesis of SnO₂ nanostructures and photocatalytic applications. Ceramics International, 39(7), 8311–8317.

https://doi.org/10.1016/j.ceramint.2013.03.101

Gaashani, R. A., Radiman, S., Tabet, N., & Daud, A. R. (2012).

Optical properties of SnO₂ nanostructures prepared by thermal decomposition. Materials Science and Engineering B, 177(6), 462–470.

https://doi.org/10.1016/j.mseb.2012.02.006

Song, L., Zhao, B., Ju, X., Liu, L., & Gong, Y. (2020).

Methanol gas sensing performance of SnO₂ nanostructures with different morphologies. Materials Science in Semiconductor Processing, 111, 104986.

https://doi.org/10.1016/j.mssp.2020.104986

Tan, E. T. H., Ho, G. W., Wong, A. S. W., Kawi, S., & Wee, A. T. S. (2008).

Gas sensing properties of tin oxide nanostructures synthesized by solid-state reaction. Nanotechnology, 19, 255706.

https://doi.org/10.1088/0957-4484/19/25/255706

Liu, A., Zhu, M., & Dai, B. (2019).

High-performance SnO₂ catalyst for oxidative desulfurization. Applied Catalysis A: General, 583, 117134.

https://doi.org/10.1016/j.apcata.2019.117134

Kim, D. H., Kim, S. Y., Han, S. W., Cho, Y. K., & Jeong, M. G. (2015).

Catalytic stability of TiO₂-shell/Ni-core catalysts for CO₂ reforming of CH₄. Applied Catalysis A: General, 495, 184–191.

https://doi.org/10.1016/j.apcata.2015.02.015

Chen, Y., Meng, Q., Zhang, L., Han, C., & Gao, H. (2019).

SnO₂-based electron transporting layers for perovskite solar cells. Journal of Energy Chemistry, 35, 144–167.

https://doi.org/10.1016/j.jechem.2018.11.011

Tazikeh, S., Akbari, A., Talebi, A., & Talebi, E. (2014).

Synthesis and characterization of SnO₂ nanoparticles by co-precipitation. Materials Science-Poland, 32(1), 98–101.

https://doi.org/10.2478/s13536-013-0164-y

Agrahari, V., Mathpal, M. C., Kumar, M., & Agarwal, A. (2015).

Optoelectronic properties of DMS SnO₂ nanoparticles. Journal of Alloys and Compounds, 622, 48–53.

https://doi.org/10.1016/j.jallcom.2014.10.009

Tran, V. H., Ambade, R. B., Ambade, S. B., Lee, S. H., & Lee, I. H. (2017).

Low-temperature processed SnO₂ nanoparticles as cathode buffer layers. ACS Applied Materials & Interfaces, 9(2), 1645–1653.

https://doi.org/10.1021/acsami.6b10857

Liu, Y., Wei, S., Wang, G., Tong, J., & Li, J. (2020).

Quantum-sized SnO₂ nanoparticles with up-shifted conduction band. Langmuir, 36(23), 6605–6609.

https://doi.org/10.1021/acs.langmuir.0c00107

Vasanthi, V., Kottaisamy, M., Anitha, K., & Ramakrishnan, V. (2018).

Yellow-emitting Cd-doped SnO₂ nanophosphors. Materials Science in Semiconductor Processing, 85, 141–149.

https://doi.org/10.1016/j.mssp.2018.06.001

Porto, S. P. S., Fleury, P. A., & Damen, T. C. (1967).

Raman spectra of TiO₂, MgF₂, ZnF₂, FeF₂, and MnF₂. Physical Review, 154, 522.

https://doi.org/10.1103/PhysRev.154.522

Traylor, J. G., Smith, H. G., Nicklow, R. M., & Wilkinson, M. K. (1971).

Lattice dynamics of rutile. Physical Review B, 3, 3457.

https://doi.org/10.1103/PhysRevB.3.3457

Kuok, M. H., & Lim, L. H. (1990).

Temperature-dependent Raman study of tin(II) chloride. Journal of Raman Spectroscopy, 21, 675–677.

https://doi.org/10.1002/jrs.1250211007

Geurts, J., Rau, S., Richter, W., & Schmitte, F. J. (1984).

SnO films and oxidation to SnO₂: Raman and XRD studies. Thin Solid Films, 121, 217–225.

https://doi.org/10.1016/0040-6090(84)90303-1

Krishna, K. M., Sharon, M., Mishra, M. K., & Marathe, V. R. (1996).

Selection of optimal mixing ratios using band-gap calculations. Electrochimica Acta, 41, 1999–2004.

https://doi.org/10.1016/0013-4686(96)00004-7

Sangaletti, L., Depero, L. E., Allieri, B., Pioselli, F., & Comini, E. (1998).

Oxidation of Sn thin films to SnO₂. Journal of Materials Research, 13, 2457–2460.

https://doi.org/10.1557/JMR.1998.0343

Zeferino, R. S., Pal, U., Melendrez, R., Duran-Munoz, H. A., & Flores, M. B. (2013).

Dose-enhancing behavior of Eu-doped SnO₂ nanoparticles. Journal of Applied Physics, 113, 064306.

https://doi.org/10.1063/1.4790486

Dutta, K., & De, S. K. (2007).

Optical and nonlinear electrical properties of SnO₂–polyaniline nanocomposites. Materials Letters, 61, 4967–4971.

https://doi.org/10.1016/j.matlet.2007.03.086

Zhong, G., & Liu, M. (1999).

Nanostructured SnO₂ via sol–gel process. Journal of Materials Science, 34, 3213–3219.

https://doi.org/10.1023/A:1004685907751

Monredon, S. D., Cellot, A., Ribot, F., Sanchez, C., & Armelao, L. (2002).

Synthesis and characterization of crystalline SnO₂ nanoparticles. Journal of Materials Chemistry, 12, 2396–2400.

https://doi.org/10.1039/B203049G

Farrukh, M. A., Heng, B. T., & Adnan, R. (2010).

Surfactant-controlled synthesis of SnO₂ nanoparticles. Turkish Journal of Chemistry, 34, 537–550.

https://doi.org/10.3906/kim-1001-466

Sambasivam, S., Joseph, D. P., Jeong, J. H., Choi, B. C., & Lim, K. T. (2011).

Antiferromagnetic interactions in Er-doped SnO₂ nanoparticles. Journal of Nanoparticle Research, 13, 4623–4630.

https://doi.org/10.1007/s11051-011-0426-8

Yu, K. N., Xiong, Y., Liu, Y., & Xiong, C. (1997).

Microstructural change of nano-SnO₂ with annealing temperature. Physical Review B, 55(4), 2666–2671.

https://doi.org/10.1103/PhysRevB.55.2666

Kissine, V. V., Voroshilov, S. A., & Sysoev, V. V. (1999).

Oxygen flow effects on gas sensitivity of SnO₂ films. Sensors and Actuators B, 55(1), 55–59.

https://doi.org/10.1016/S0925-4005(99)00022-2

Mote, V. D., Purushotham, Y., & Dole, B. N. (2012).

Williamson–Hall analysis of ZnO nanoparticles. Journal of Theoretical and Applied Physics, 6, 1–8.

https://doi.org/10.1186/2251-7235-6-6

Zak, A. K., Majid, W. H. A., Abrishami, M. E., & Yousefi, R. (2011).

X-ray analysis of ZnO nanoparticles. Solid State Sciences, 13(1), 251–256.

https://doi.org/10.1016/j.solidstatesciences.2010.11.024

Sarkar, S., & Das, R. (2018).

Shape effects on elastic properties of Ag nanocrystals. Micro & Nano Letters, 13(3), 312–315.

https://doi.org/10.1049/mnl.2017.0349

Jahnavi, V. S., Tripathy, S. K., & Ramalingeswara Rao, A. V. N. (2020).

Structural, optical, dielectric, and magnetic properties of Cu-doped SnO₂ nanoparticles. Journal of Electronic Materials, 49, 3540–3554.

https://doi.org/10.1007/s11664-020-08028-7

Manikandan, K., Dhanuskodi, S., Thomas, A. R., Maheswari, N., Muralidharan, G., & Sastikumar, D. (2016).

Size–strain analysis and multifunctional applications of SnO₂ nanoparticles. RSC Advances, 6(93), 90559–90570.

https://doi.org/10.1039/C6RA20503H

Singh, M. K., Mathpal, M. C., & Agarwal, A. (2012).

Optical properties of SnO₂ dots synthesized by laser ablation. Chemical Physics Letters, 536, 87–91.

https://doi.org/10.1016/j.cplett.2012.03.084

Wang, C., Ge, M., & Jiang, J. Z. (2010).

Magnetic behavior of SnO₂ nanosheets. Applied Physics Letters, 97, 042510.

https://doi.org/10.1063/1.3473764

Alanko, G. A., Thurber, A., Hanna, C. B., & Punnoose, A. (2012).

Size and doping effects on ferromagnetism in SnO₂. Journal of Applied Physics, 111, 07C321.

https://doi.org/10.1063/1.3679455

Wu, P., Zhou, B., & Zhou, W. (2012).

Room-temperature ferromagnetism in Mg-doped SnO₂ films. Applied Physics Letters, 100, 182405.

https://doi.org/10.1063/1.4711220

Liu, S. J., Liu, C. Y., Juang, J. Y., & Fang, H. W. (2009).

Room-temperature ferromagnetism in Zn- and Mn-codoped SnO₂ films. Journal of Applied Physics, 105, 013928.

https://doi.org/10.1063/1.3056374

Kimura, H., Fukumura, T., Kawasaki, M., Inaba, K., & Hasegawa, T. (2002).

Mn-doped SnO₂ diluted magnetic semiconductor. Applied Physics Letters, 80, 94–96.

https://doi.org/10.1063/1.1430856

Misra, S. K., Andronenko, S. I., Reddy, K. M., Hays, J., & Punnoose, A. (2006).

Magnetic resonance of Co²⁺ ions in SnO₂ nanoparticles. Journal of Applied Physics, 99, 08M106.

https://doi.org/10.1063/1.2165146

Lee, K. M., Lee, D. J., & Ahn, H. (2004).

XRD and TEM studies of SnO nanoparticles prepared by inert gas condensation. Materials Letters, 58, 3122–3125.

https://doi.org/10.1016/j.matlet.2004.06.002

Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., & Voigt, J. A. (1996).

Mechanisms behind green photoluminescence in ZnO. Journal of Applied Physics, 79, 7983–7990.

https://doi.org/10.1063/1.362349

Powder Diffraction File. (1987).

JCPDS Card No. 21-1250. Swarthmore, PA, USA.

Downloads

Published

18-12-2025

Issue

Section

Scientific paper