Investigation of structural, optical and emission properties of SnO2 nanoparticles by thermal decomposition method
DOI:
https://doi.org/10.62638/ZasMat1331Abstract
SnO2 nanoparticles were synthesized by thermal decomposition technique by varying the temperature from 300°C to 600°C. The synthesized nanoparticles (9 nm) were of rutile (tetragonal) phase with orientation along [110], [101], [200], [211], [220], [310], [112], [301], [202] crystal planes. The peak intensity of the crystal planes become prominent with increase in decomposition temperature while the impurity phases diminish. The crystallite size and micro strain of the nanoparticle was calculated using William Hall equation with union deformation model. SnO2 nanoparticles synthesized at 600°C shows a positive strain of
0.3571x10-3 indicating lattice expansion. At thermal decomposition of 5000C the sample has maximum transparency with band gap at ~ 4.19 eV and has broad emission in blue region of the EM Spectra with high intensity (5 x105 counts), rendering it to be a suitable material for blue light LED.
Keywords:
Thermal decomposition method , SnO2 Nanoparticles , Tin (II) chloride dihydrateReferences
Patel, G. H., Chaki, S. H., Kannaujiya, R. M., Parekh, Z. R., & Hirpara, A. B. (2021).
Sol–gel synthesis and thermal characterization of SnO₂ nanoparticles. Physica B: Condensed Matter, 613, 412987.
https://doi.org/10.1016/j.physb.2021.412987
Onkar, S. G., Raghuwanshi, F. C., Patil, D. R., & Krishnakumar, T. (2020).
Synthesis, characterization and gas sensing study of SnO₂ thick film sensors toward H₂S, NH₃, LPG, and CO₂. Materials Today: Proceedings, 23, 190–201.
https://doi.org/10.1016/j.matpr.2020.02.017
Lopez-Moreno, S., Romero, A. H., Mejia-Lopez, J., & Muñoz, A. (2016).
First-principles study of pressure-induced structural phase transitions in MnF₂. Physical Chemistry Chemical Physics, 18(48), 33250–33263.
https://doi.org/10.1039/C6CP05467F
Erdem, I., Kart, H. H., & Çağın, T. (2014).
High-pressure phase transitions in SnO₂ polymorphs by first-principles calculations. Journal of Alloys and Compounds, 587, 638–645.
https://doi.org/10.1016/j.jallcom.2013.10.238
Mohanta, D., & Ahmaruzzaman, M. (2016).
Tin oxide nanostructured materials: Recent developments in synthesis, modification, and applications. RSC Advances, 6(112), 110996–111015.
https://doi.org/10.1039/C6RA21444D
Chao, J., Zhang, D., Xing, S., Chen, Y., & Shen, W. (2018).
Controllable assembly of tin oxide thin films with efficient photoconductive activity. Materials Letters, 229, 244–247.
https://doi.org/10.1016/j.matlet.2018.07.027
Wang, Q., Yao, N., An, D., Li, Y., & Zou, Y. (2016).
Enhanced gas sensing properties of hierarchical SnO₂ nanoflowers assembled from nanorods. Ceramics International, 42, 15889–15896.
https://doi.org/10.1016/j.ceramint.2016.07.062
Hu, J., Li, X., Wang, X., Li, Y., & Li, Q. (2018).
Hierarchical aloe-like SnO₂ nanoflowers and their gas sensing properties. Journal of Materials Research, 33, 1433–1441.
https://doi.org/10.1557/jmr.2018.94
Zeng, Y., Wang, Y., Qiao, L., Bing, Y., & Zou, B. (2016).
Hierarchical SnO₂ hollow nanosheets with mesoporous multilayered interiors for gas sensing. Sensors and Actuators B: Chemical, 222, 354–361.
https://doi.org/10.1016/j.snb.2015.08.068
Li, G., Cheng, Z., Xiang, Q., Yan, L., & Wang, X. (2019).
PdAu-decorated SnO₂ nanosheets for temperature-dependent dual-selective gas sensing. Sensors and Actuators B: Chemical, 283, 590–601.
https://doi.org/10.1016/j.snb.2018.09.117
Abideen, Z. U., Kim, J. H., & Kim, S. S. (2017).
Optimization of metal nanoparticle loading on SnO₂ nanowires for superior gas sensing. Sensors and Actuators B: Chemical, 238, 374–380.
https://doi.org/10.1016/j.snb.2016.07.054
Varshney, D., & Verma, K. (2013).
Effect of stirring time on size and dielectric properties of SnO₂ nanoparticles. Journal of Molecular Structure, 1034, 216–222.
https://doi.org/10.1016/j.molstruc.2012.10.049
Akram, M., Saleh, A. T., Ibrahim, W. A. W., Awan, A. S., & Hussain, R. (2016).
Continuous microwave flow synthesis of nano-sized SnO₂. Ceramics International, 42, 8613–8619.
https://doi.org/10.1016/j.ceramint.2016.02.092
Ahmed, A. S., Azam, A., Shafeeq, M., Chaman, M., & Tabassum, S. (2012).
Temperature-dependent structural and optical properties of SnO₂ nanoparticles. Journal of Physics and Chemistry of Solids, 73, 943–947.
https://doi.org/10.1016/j.jpcs.2012.02.030
Lemarchand, A., Remondière, F., Jouin, J., Thomas, P., & Masson, O. (2020).
Crystallization pathway of size-controlled SnO₂ nanoparticles via a non-aqueous sol–gel route. Crystal Growth & Design, 20, 1110–1118.
https://doi.org/10.1021/acs.cgd.9b01428
Das, S., Kar, S., & Chaudhuri, S. (2006).
Optical properties of SnO₂ nanoparticles and nanorods synthesized by solvothermal process. Journal of Applied Physics, 99, 114303.
https://doi.org/10.1063/1.2200449
Akhir, M. A. M., Mohamed, K., Lee, H. L., & Rezan, S. A. (2016).
Hydrothermal synthesis of SnO₂ nanostructures and crystal size optimization. Procedia Chemistry, 19, 993–998.
https://doi.org/10.1016/j.proche.2016.03.148
Srivastava, A., Lakshmikumar, S. T., Srivastava, A. K., Rashmi, & Jain, K. (2007).
Gas sensing properties of nanocrystalline SnO₂ synthesized by microwave-assisted technique. Sensors and Actuators B: Chemical, 126, 583–587.
https://doi.org/10.1016/j.snb.2007.04.006
Sathishkumar, M., & Geethalakshmi, S. (2019).
Enhanced photocatalytic and antibacterial activity of Cu-doped SnO₂ nanoparticles. Materials Today: Proceedings, 20, 54–63.
https://doi.org/10.1016/j.matpr.2019.08.246
Parthibavarman, M., Vallalperuman, K., Sathishkumar, S., Durairaj, M., & Thavamani, K. (2013).
Microwave synthesis of nanocrystalline SnO₂. Journal of Materials Science: Materials in Electronics, 25(2), 730–735.
https://doi.org/10.1007/s10854-013-1637-9
Aziz, M., Abbas, S. S., Baharom, W. R. W., & Mahmud, W. Z. W. (2012).
Structure of SnO₂ nanoparticles synthesized by sol–gel method. Materials Letters, 74, 62–64.
https://doi.org/10.1016/j.matlet.2012.01.073
Talebian, N., & Jafarinezhad, F. (2013).
Morphology-controlled synthesis of SnO₂ nanostructures and photocatalytic applications. Ceramics International, 39(7), 8311–8317.
https://doi.org/10.1016/j.ceramint.2013.03.101
Gaashani, R. A., Radiman, S., Tabet, N., & Daud, A. R. (2012).
Optical properties of SnO₂ nanostructures prepared by thermal decomposition. Materials Science and Engineering B, 177(6), 462–470.
https://doi.org/10.1016/j.mseb.2012.02.006
Song, L., Zhao, B., Ju, X., Liu, L., & Gong, Y. (2020).
Methanol gas sensing performance of SnO₂ nanostructures with different morphologies. Materials Science in Semiconductor Processing, 111, 104986.
https://doi.org/10.1016/j.mssp.2020.104986
Tan, E. T. H., Ho, G. W., Wong, A. S. W., Kawi, S., & Wee, A. T. S. (2008).
Gas sensing properties of tin oxide nanostructures synthesized by solid-state reaction. Nanotechnology, 19, 255706.
https://doi.org/10.1088/0957-4484/19/25/255706
Liu, A., Zhu, M., & Dai, B. (2019).
High-performance SnO₂ catalyst for oxidative desulfurization. Applied Catalysis A: General, 583, 117134.
https://doi.org/10.1016/j.apcata.2019.117134
Kim, D. H., Kim, S. Y., Han, S. W., Cho, Y. K., & Jeong, M. G. (2015).
Catalytic stability of TiO₂-shell/Ni-core catalysts for CO₂ reforming of CH₄. Applied Catalysis A: General, 495, 184–191.
https://doi.org/10.1016/j.apcata.2015.02.015
Chen, Y., Meng, Q., Zhang, L., Han, C., & Gao, H. (2019).
SnO₂-based electron transporting layers for perovskite solar cells. Journal of Energy Chemistry, 35, 144–167.
https://doi.org/10.1016/j.jechem.2018.11.011
Tazikeh, S., Akbari, A., Talebi, A., & Talebi, E. (2014).
Synthesis and characterization of SnO₂ nanoparticles by co-precipitation. Materials Science-Poland, 32(1), 98–101.
https://doi.org/10.2478/s13536-013-0164-y
Agrahari, V., Mathpal, M. C., Kumar, M., & Agarwal, A. (2015).
Optoelectronic properties of DMS SnO₂ nanoparticles. Journal of Alloys and Compounds, 622, 48–53.
https://doi.org/10.1016/j.jallcom.2014.10.009
Tran, V. H., Ambade, R. B., Ambade, S. B., Lee, S. H., & Lee, I. H. (2017).
Low-temperature processed SnO₂ nanoparticles as cathode buffer layers. ACS Applied Materials & Interfaces, 9(2), 1645–1653.
https://doi.org/10.1021/acsami.6b10857
Liu, Y., Wei, S., Wang, G., Tong, J., & Li, J. (2020).
Quantum-sized SnO₂ nanoparticles with up-shifted conduction band. Langmuir, 36(23), 6605–6609.
https://doi.org/10.1021/acs.langmuir.0c00107
Vasanthi, V., Kottaisamy, M., Anitha, K., & Ramakrishnan, V. (2018).
Yellow-emitting Cd-doped SnO₂ nanophosphors. Materials Science in Semiconductor Processing, 85, 141–149.
https://doi.org/10.1016/j.mssp.2018.06.001
Porto, S. P. S., Fleury, P. A., & Damen, T. C. (1967).
Raman spectra of TiO₂, MgF₂, ZnF₂, FeF₂, and MnF₂. Physical Review, 154, 522.
https://doi.org/10.1103/PhysRev.154.522
Traylor, J. G., Smith, H. G., Nicklow, R. M., & Wilkinson, M. K. (1971).
Lattice dynamics of rutile. Physical Review B, 3, 3457.
https://doi.org/10.1103/PhysRevB.3.3457
Kuok, M. H., & Lim, L. H. (1990).
Temperature-dependent Raman study of tin(II) chloride. Journal of Raman Spectroscopy, 21, 675–677.
https://doi.org/10.1002/jrs.1250211007
Geurts, J., Rau, S., Richter, W., & Schmitte, F. J. (1984).
SnO films and oxidation to SnO₂: Raman and XRD studies. Thin Solid Films, 121, 217–225.
https://doi.org/10.1016/0040-6090(84)90303-1
Krishna, K. M., Sharon, M., Mishra, M. K., & Marathe, V. R. (1996).
Selection of optimal mixing ratios using band-gap calculations. Electrochimica Acta, 41, 1999–2004.
https://doi.org/10.1016/0013-4686(96)00004-7
Sangaletti, L., Depero, L. E., Allieri, B., Pioselli, F., & Comini, E. (1998).
Oxidation of Sn thin films to SnO₂. Journal of Materials Research, 13, 2457–2460.
https://doi.org/10.1557/JMR.1998.0343
Zeferino, R. S., Pal, U., Melendrez, R., Duran-Munoz, H. A., & Flores, M. B. (2013).
Dose-enhancing behavior of Eu-doped SnO₂ nanoparticles. Journal of Applied Physics, 113, 064306.
https://doi.org/10.1063/1.4790486
Dutta, K., & De, S. K. (2007).
Optical and nonlinear electrical properties of SnO₂–polyaniline nanocomposites. Materials Letters, 61, 4967–4971.
https://doi.org/10.1016/j.matlet.2007.03.086
Zhong, G., & Liu, M. (1999).
Nanostructured SnO₂ via sol–gel process. Journal of Materials Science, 34, 3213–3219.
https://doi.org/10.1023/A:1004685907751
Monredon, S. D., Cellot, A., Ribot, F., Sanchez, C., & Armelao, L. (2002).
Synthesis and characterization of crystalline SnO₂ nanoparticles. Journal of Materials Chemistry, 12, 2396–2400.
https://doi.org/10.1039/B203049G
Farrukh, M. A., Heng, B. T., & Adnan, R. (2010).
Surfactant-controlled synthesis of SnO₂ nanoparticles. Turkish Journal of Chemistry, 34, 537–550.
https://doi.org/10.3906/kim-1001-466
Sambasivam, S., Joseph, D. P., Jeong, J. H., Choi, B. C., & Lim, K. T. (2011).
Antiferromagnetic interactions in Er-doped SnO₂ nanoparticles. Journal of Nanoparticle Research, 13, 4623–4630.
https://doi.org/10.1007/s11051-011-0426-8
Yu, K. N., Xiong, Y., Liu, Y., & Xiong, C. (1997).
Microstructural change of nano-SnO₂ with annealing temperature. Physical Review B, 55(4), 2666–2671.
https://doi.org/10.1103/PhysRevB.55.2666
Kissine, V. V., Voroshilov, S. A., & Sysoev, V. V. (1999).
Oxygen flow effects on gas sensitivity of SnO₂ films. Sensors and Actuators B, 55(1), 55–59.
https://doi.org/10.1016/S0925-4005(99)00022-2
Mote, V. D., Purushotham, Y., & Dole, B. N. (2012).
Williamson–Hall analysis of ZnO nanoparticles. Journal of Theoretical and Applied Physics, 6, 1–8.
https://doi.org/10.1186/2251-7235-6-6
Zak, A. K., Majid, W. H. A., Abrishami, M. E., & Yousefi, R. (2011).
X-ray analysis of ZnO nanoparticles. Solid State Sciences, 13(1), 251–256.
https://doi.org/10.1016/j.solidstatesciences.2010.11.024
Sarkar, S., & Das, R. (2018).
Shape effects on elastic properties of Ag nanocrystals. Micro & Nano Letters, 13(3), 312–315.
https://doi.org/10.1049/mnl.2017.0349
Jahnavi, V. S., Tripathy, S. K., & Ramalingeswara Rao, A. V. N. (2020).
Structural, optical, dielectric, and magnetic properties of Cu-doped SnO₂ nanoparticles. Journal of Electronic Materials, 49, 3540–3554.
https://doi.org/10.1007/s11664-020-08028-7
Manikandan, K., Dhanuskodi, S., Thomas, A. R., Maheswari, N., Muralidharan, G., & Sastikumar, D. (2016).
Size–strain analysis and multifunctional applications of SnO₂ nanoparticles. RSC Advances, 6(93), 90559–90570.
https://doi.org/10.1039/C6RA20503H
Singh, M. K., Mathpal, M. C., & Agarwal, A. (2012).
Optical properties of SnO₂ dots synthesized by laser ablation. Chemical Physics Letters, 536, 87–91.
https://doi.org/10.1016/j.cplett.2012.03.084
Wang, C., Ge, M., & Jiang, J. Z. (2010).
Magnetic behavior of SnO₂ nanosheets. Applied Physics Letters, 97, 042510.
https://doi.org/10.1063/1.3473764
Alanko, G. A., Thurber, A., Hanna, C. B., & Punnoose, A. (2012).
Size and doping effects on ferromagnetism in SnO₂. Journal of Applied Physics, 111, 07C321.
https://doi.org/10.1063/1.3679455
Wu, P., Zhou, B., & Zhou, W. (2012).
Room-temperature ferromagnetism in Mg-doped SnO₂ films. Applied Physics Letters, 100, 182405.
https://doi.org/10.1063/1.4711220
Liu, S. J., Liu, C. Y., Juang, J. Y., & Fang, H. W. (2009).
Room-temperature ferromagnetism in Zn- and Mn-codoped SnO₂ films. Journal of Applied Physics, 105, 013928.
https://doi.org/10.1063/1.3056374
Kimura, H., Fukumura, T., Kawasaki, M., Inaba, K., & Hasegawa, T. (2002).
Mn-doped SnO₂ diluted magnetic semiconductor. Applied Physics Letters, 80, 94–96.
https://doi.org/10.1063/1.1430856
Misra, S. K., Andronenko, S. I., Reddy, K. M., Hays, J., & Punnoose, A. (2006).
Magnetic resonance of Co²⁺ ions in SnO₂ nanoparticles. Journal of Applied Physics, 99, 08M106.
https://doi.org/10.1063/1.2165146
Lee, K. M., Lee, D. J., & Ahn, H. (2004).
XRD and TEM studies of SnO nanoparticles prepared by inert gas condensation. Materials Letters, 58, 3122–3125.
https://doi.org/10.1016/j.matlet.2004.06.002
Vanheusden, K., Warren, W. L., Seager, C. H., Tallant, D. R., & Voigt, J. A. (1996).
Mechanisms behind green photoluminescence in ZnO. Journal of Applied Physics, 79, 7983–7990.
https://doi.org/10.1063/1.362349
Powder Diffraction File. (1987).
JCPDS Card No. 21-1250. Swarthmore, PA, USA.






