Application of fly ash for flouride adsorption
DOI:
https://doi.org/10.5937/zasmat2204395VKeywords:
fly ash, adsorption, fluorides, wastewaterAbstract
The suitable characteristics of fly ash from thermal power plants make it a proper adsorbent for removing various pollutants from water and aqueous solutions. Valorization and utilization of fly ash can reduce the use of conventional adsorbents. The paper presents an overview of the possibility of using raw and modified fly ash to remove fluorides from water and aqueous solutions, as well as the influence of different process parameters (sorbent dose, contact time, pH value, temperature, etc.) on the value of adsorption capacity and adsorption efficiency of used sorbent. Fly ash can be used as an effective sorbent for the removal of fluoride, both in raw and modified form, with given optimal process parameters. Raw fly ash shows better adsorption properties when performing the experiment in a column, with a higher dose of sorbent and longer contact time, in an acidic environment (pH = 2-3), compared to batch experiments. Various authors have modified fly ash by treatment with certain chemical agents (HCl, Ca (OH)2…) or by synthesis of zeolite based on fly ash. Modification of fly ash improves its adsorption properties, so in slightly acidic conditions (pH = 6), for a relatively short contact time (10-30 min), in batch conditions, significant adsorption efficiency (~ 90%) can be achieved.References
Fly Ash Market by Type (Type F, Type C), Application (Portland Cement & Concrete, Bricks & Blocks, Road Construction, Agriculture), and Region (Asia Pacific, Europe, North America, Middle East & Africa, South America) - Global Forecast to 2023. https://www.marketsandmarkets.com/Market-Reports/fly-ash-market-76345803.html, 31.5.2022
Fly ash market - growth, trends, COVID-19 impact, and forecasts (2022 -2027). https://www. mordorintelligence.com/industry-reports/fly-ashmarket, 31.5.2022
Fly Ash Market Size, Share & Industry Analysis, By Type (Class F and Class C), by Application (Cement & concretes, Fills & embankments, Waste Stabilization, Mining, Oil field Service and Road Stabilization and Others), and Regional Forecast, 2020-202. https://www.fortunebusinessinsights. com/industry-reports/fly-ash-market-101087, 31.5. 2022
(2016) Production and Utilisation of CCPs in 2016 in Europe. http://www.ecoba.com/evjm, media /ccps/ECO_stat_2016_EU15_tab.pdf, 26.02.2022
Ahmaruzzaman, M. (2010) A review on the utilization of fly ash.Progress in energy and combustion science, 36(3), 327-363
https://doi.org/10.1016/j.pecs.2009.11.003
Akafu, T., Chimdi, A., Gomoro, K. (2019) Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminium Hydroxide.Journal of Analytical Methods in Chemistry, Volume 2019, Article ID 4831926, 1-11
https://doi.org/10.1155/2019/4831926
Ali, S., Thakur, S.K., Sarkar, A., Shekhar, S. (2016) Worldwide contamination of water by fluoride.Environmental chemistry letters, 14(3), 291-315
https://doi.org/10.1007/s10311-016-0563-5
Argiz, C., Menéndez, E., Moragues, A., Sanjuán, M.A. (2015) Fly ash characteristics of Spanish coal-fired power plants.Afinidad, 72(572)
Artiola, J.F., Walworth, J.L., Musil, S.A., Crimmins, M.A. (2019) Soil and land pollution, book In Environmental and pollution science. Amsterdam: Academic Press, pp 219-235
https://doi.org/10.1016/B978-0-12-814719-1.00014-8
ASTM, American Society for Testing Materials (2005) ASTM standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (C618-05). in: Annual book of ASTM standards, concrete and aggregates, West Conshohocken: ASTM International, vol. 04.02
Babel, S., Kurniawan, T.A. (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review.Journal of hazardous materials, 97(1-3), 219-243
https://doi.org/10.1016/S0304-3894(02)00263-7
Bazrafshan, E., Balarak, D., Panahi, A.H., Kamani, H., Mahvi, A.H. (2016) Fluoride removal from aqueous solutions by cupricoxide nanoparticles.Fluoride, 49(3), 233
Bhatnagar, A., Kumare, E., Sillanpää, M. (2011) Fluoride removal from water by adsorption-a review.Chemical engineering journal, 171(3), 811-840
https://doi.org/10.1016/j.cej.2011.05.028
Bhavyalekshmi, R., Madhu, G. (2016) Performance evaluation of fly ash as low cost adsorbent for fluoride removal.Rem, 40, 60
Çelik, Ö., Dam, E.I., Pişkin, S. (2008) Characterization of fly ash and it effects on the compressive strength properties of Portland cement.Indian Journal of Engineering and Material Sciences, 15(5)
Chakraborty, G.M., Das, S.K., Mandal, S.N. (2016) in: International Conference on Pure and Applied Chemistry, Switzerland: Springer, p. 69-87
Chandraker, N., Jyoti, G., Thakur, R.S., Chaudhari, P.K. (2020)IOP Conference Series: Earth and Environmental Science, 597, IOP Publishing, Bandung, Indonesia, p 012009
https://doi.org/10.1088/1755-1315/597/1/012009
Chaturvedi, A.K., Yadava, K.P., Pathak, K.C., Singh, V.N. (1990) Defluoridation of water by adsorption on fly ash.Water, Air, and Soil Pollution, 49(1), 51-61
https://doi.org/10.1007/BF00279509
Chen, J., Yang, R., Zhang, Z., Wu, D. (2022) Removal of fluoride from water using aluminum hydroxideloaded zeolite synthesized from coal fly ash.Journal of Hazardous Materials, 421, 126817
https://doi.org/10.1016/j.jhazmat.2021.126817
Chidambaram, S., Ramanathan, A.L., Vasudevan, S. (2003) Fluoride removal studies in water using natural materials.Water Sa, 29(3), 339-344
https://doi.org/10.4314/wsa.v29i3.4936
Dwivedi, A., Jain, M.K. (2014) Fly ash-waste management and overview: A Review.Recent Research in Science and Technology, 6(1)
Fawell, J., Bailey, K., Chilton, J., Dahi, E., Magara, Y. (2006) Fluoride in drinking-water. London: IWA publishing, p. 5-8
Ge, J.C., Yoon, S.K., Choi, N.J. (2018) Application of fly ash as an adsorbent for removal of air and water pollutants.Applied Sciences, 8(7), 1116
https://doi.org/10.3390/app8071116
Geethamani, C.K., Ramesh, S.T., Gandhimathi, R., Nidheesh, P.V. (2014) Alkali-treated fly ash for the removal of fluoride from aqueous solutions.Desalination and Water Treatment, 52(19-21), 3466-3476
https://doi.org/10.1080/19443994.2013.800825
Jha, S.K., Mishra, V.K., Sharma, D.K., Damodaran, T. (2011) Fluoride in the environment and its metabolism in humans.Reviews of Environmental Contamination and Toxicology, Volume 211, 121-142
https://doi.org/10.1007/978-1-4419-8011-3_4
Joshi, R.C., Lohtia, R.P. (1997) Fly ash in concrete: production, properties and uses. Alberta, Canada: CRC Press, Vol. 2
Kandel, S., Vogel, J., Penn, C., Brown, G. (2017) Phosphorus retention by fly ash amended filter media in aged bioretention cells.Water, 9(10), 746
https://doi.org/10.3390/w9100746
Kofa, G.P., Gomdje, V.H., Telegang, C., Koungou, S.N. (2017) Removal of fluoride from water by adsorption onto fired clay pots: kinetics and equilibrium studies.Journal of applied chemistry, 1-7
https://doi.org/10.1155/2017/6254683
Kumar, P.S., Suganya, S., Srinivas, S., Priyadharshini, S., Karthika, M., Karishma, S.R., Swetha, V., Naushad, M., Lichtfouse, E. (2019) Treatment of fluoride-contaminated water: A review.Environmental Chemistry Letters, 17(4), 1707-1726
https://doi.org/10.1007/s10311-019-00906-9
Lennon, M.A., Whelton, H., O'mullane, D., Ekstrand, J. (2004) Fluoride, Rolling revision of the WHO guidelines for drinking-water quality. World Health
Lü, H., Wang, B., Ban, Q. (2010) Defluoridation of drinking water by zeolite NaP1 synthesized from coal fly ash.Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(16), 1509-1516
https://doi.org/10.1080/15567030902780352
Mann, S., Mandal, A. (2014) Removal of fluoride from drinking water using sawdust.International Journal of Engineering Research and Applications, 4(7), 116-123
Medical Research Council Working Group (2002) Water fluoridation and health, Report. London: MRC, https://bfsweb.org/water-fluoridation-andhealth-medical-research-council-2002/, 20.2.2022
Nemade, P.D., Vasudeva, R.A., Alappat, B.J. (2002) Removal of fluorides from water using low cost adsorbents.Water Science and Technology: Water Supply, 2(1), 311-317
https://doi.org/10.2166/ws.2002.0037
Panda, L., Kar, B.B. (2018) Preparation of fly ash based zeolite for fluoride removal.Asian Journal of Water, Environment and Pollution, 15(4), 105-113
https://doi.org/10.3233/AJW-180063
Petersen, P.E., Lennon, M.A. (2004) Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach.Community dentistry and oral epidemiology, 32(5), 319-321
https://doi.org/10.1111/j.1600-0528.2004.00175.x
PHO, Public Health Ontario (2018) Ontario Agency for Health Protection and Promotion, Evidence review for adverse health effects of drinking optimally fluoridated water: evidence since the 2010 Health Canada fluoride document. Toronto, ON: Queen's Printer for Ontario
Physicians for Social Responsibility (PSR) (2018) Coal ash: hazardous to your health.Physicians for Social Responsibility, https://www. psr. org/wp-content/uploads/2018/05/coal-ashhazardous-to-human-health.pdf , 21.2.2022
Piekos, R., Paslawska, S. (1999) Fluoride uptake characteristics of fly ash.Fluoride, 32, 14-19
Ranasinghe, R.A.J.C., Hansima, M.A.C.K., Nanayakkara, K.G.N. (2022) Adsorptive removal of fluoride from water by chemically modified coal fly ash: Synthesis, characterization, kinetics, and mechanisms.Groundwater for Sustainable Development, 16, 100699
https://doi.org/10.1016/j.gsd.2021.100699
Saravanakumar, P., Gopalakrishnan, P., Sivakamidevi, M., Archana, E.S. (2019) Domestic wastewater treatment using flyash as adsorbent.International Journal of Engineering and Advanced Technology, 8(5), 1465 -1468
Sarwar, A.F.M., Hoque, A.K.M., Fazlul, H.A.K.M., Khan, M.H., Nessa, J. (2018) Fluoride in drinking water and its health consequences. https://www.researchgate.net/publication/32468386 4_Fluoride_in_drinking_water_and_its_health_cons equences, 21.2.2022
Shah, S.F.A., Aftab, A., Soomro, N., Nawaz, M.S., Vafai, K. (2015) Waste water treatment-bed of coal fly ash for dyes and pigments industry.Pakistan Journal of Analytical & Environmental Chemistry, 16(2), 9
Singh, J., Singh, P., Singh, A. (2016) Fluoride ions vs removal technologies: A study.Arabian Journal of Chemistry, 9, 815-824
https://doi.org/10.1016/j.arabjc.2014.06.005
Skousen, J., Yang, J.E., Lee, J.S., Ziemkiewicz, P. (2013) Review of fly ash as a soil amendment.Geosystem Engineering, 16(3), 249-256
https://doi.org/10.1080/12269328.2013.832403
Souakri, S., Reess, T., de Ferron, A.S., Lemont, F., Marchand, M. (2016) Flue Gas Treatment by ESP: Realization and Optimization of an Emissive Electrode.International Journal of Plasma Environmental Science and Technology, 10(2), 173-180
Sujana, M.G., Thakur, R.S., Rao, S.B. (1998) Removal of fluoride from aqueous solution by using alum sludge.Journal of Colloid and Interface Science, 206(1), 94-101
https://doi.org/10.1006/jcis.1998.5611
Sutton, M., Kiersey, R., Farragher, L., Long, J. (2015) Health effects of water fluoridation, Report. Health Research Board, https://www.hrb.ie/fileadmin/ publications_files/Health_Effects_of_Water_Fluorid ation.pdf, 20.2.2022
Šešlija, M., Rosić, A., Radović, N., Vasić, M., Đogo, M., Jotić, M. (2016) Laboratorijska ispitivanja elektrofilterskog pepela.Tehnički vjesnik, 23(6), 1839-1848
Tanikella, P., Olek, J. (2017) Updating physical and chemical characteristics of fly ash for use in concrete. in: Joint Transportation Research Program Publication, West Lafayette: Purdue University, No. FHWA/IN/JTRP-2017/11
https://doi.org/10.5703/1288284315213
United States Environmental Protection Agency (2011) Questions and Answers on Fluoride. https://www.epa.gov/sites/production/files/2015-10/documents/2011_fluoride_questionsanswers.pdf, 20.2.2022
Upadhyay, A., Kamal, M. (2007) Characterization and utilization of fly ash. Rourkela, Orissa: National institute of technology - Department of mining engineering, Doctoral dissertation
Visa, M., Nacu, M., Carcel, R.A. (2011) in: World of Coal Ash (WOCA) Conference -May, Denver, USA, p. 9-12
Wang, Y., Reardon, E.J. (2001) Activation and regeneration of a soil sorbent for defluoridation of drinking water.Applied Geochemistry, 16(5), 531-539
https://doi.org/10.1016/S0883-2927(00)00050-0
Wardhono, A. (2018)IOP Conference Series: Materials Science and Engineering, 288, IOP Publishing, Bandung, Indonesia, p. 012019
https://doi.org/10.1088/1757-899X/288/1/012019
World Health Organization (WHO) (2008) 'Guidelines for drinking-water quality '': Incorporating the first and second addenda. Geneva, Switzerland: World Health Organization (WHO), vol. 1, 3 rd edition
Xu, X., Li, Q., Cui, H., Pang, J., Sun, L., An, H., Zhai, J. (2011) Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres.Desalination, 272(1-3), 233-239
https://doi.org/10.1016/j.desal.2011.01.028
Ye, C., Yan, B., Ji, X., Liao, B., Gong, R., Pei, X., Liu, G. (2019) Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling.Ecotoxicology and Environmental Safety, 180, 366-373
Downloads
Published
Issue
Section
License
Copyright (c) 2022 CC BY 4.0 by Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.