Predictive modeling of boriding kinetics on armco iron using linear regression approach

Authors

  • Yassine El Guerri Research Laboratory of Industrial Technologies, University of Tiaret, Algeria Author https://orcid.org/0009-0008-9664-2361
  • Bendaoud Mebarek Laboratoire de Recherche en Intelligence ArtificielleetSystèmes, University of Tiaret, Algeria Author https://orcid.org/0000-0002-6838-3867
  • Mourad Keddam Laboratoryof Materials Technology, USTHB, Algiers, Algeria Author https://orcid.org/0000-0002-7721-5830
  • Naima Hadjadj DépartementSM, FacultéST, University of Tissemsilt, Algeria; Laboratoired’Etudes Physique des Matériaux, USTO, Oran, Algeria Author
  • Omar Belguendouz Laboratoire Synthèseet Catalyse, University of Tiaret, Algeria Author
  • Mohammed Amine Khater Laboratoire de Recherche en Technologie de Fabrication Mécanique, ENPO, Oran, Algeria Author

DOI:

https://doi.org/10.62638/ZasMat1283

Abstract

Tools inevitably degrade over time, with lifespans varying based on material and usage.To mitigate this, thermochemical treatments such as boriding are employed. This process forms a boride layer with favorable tribological and mechanical properties. Generally, depending on the processing conditions, the layer may resultin either a mono-phased Fe2B or a bi-phased FeB/Fe2B structure.This study examines a mono-phased Fe2B layer formed by powder pack boriding of Armco Iron.The objective is to predict the thickness of this layer using a linear approach with minimal variables, and to compare the predictions with a more complex approach requiring additional parameters. Results show that both models yield similar predictive capabilities within the available interval, validating the linear model. However, the linear approach shows divergence when applied beyond the investigated interval, indicating limitations in its generalizability.

Keywords:

boride, boriding, layer, linear, regression, thickness

References

H. Berns (2013) The History of Hardening, Härterei Gerster AG, Switzerland. ISBN: 3033038891

P. Jurči (2020) History, Developments and Trends in the Heat Treatment of Steel, Materials, 13(18), 4003. https://doi.org/10.3390/ma13184003

Y. G. Gogotsi, R. A. Andrievski (1999) Materials Science of Carbides, Nitrides and Borides, SpringerDordrecht, Russia. https://doi.org/10.1007/978-94-011-4562-6

B. Bhushan (2001) Modern Tribology Handbook, Taylor & Francis, United States of America. https://doi.org/10.1201/9780849377877

M. Kulka (2019) Current Trends in Boriding Techniques, Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-06782-3

K.-M. Winter, J. Kalucki, D. Koshel (2015) Process technologies for thermochemical surface engineering, Thermochemical Surface Engineering of Steels, Improving Materials Performance, Woodhead Publishing, 141-206. https://doi.org/10.1533/9780857096524.1.141

R. S. Petrova, N. Suwattananont, V. Samardzic (2008) The effect of boronizing on metallic alloys for automotive applications, Journal of Materials Engineering and Performance, 17(3) 340-345 https://doi.org/10.1007/s11665-008-9228-2

F. Milési, M. Coig, J.-F. Lerat, T. Desrues, J. Le Perchec, A. Lanterne, L. Lachal, F. Mazen (2017) Homojunction silicon solar cells doping by ion implantation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms Volume, 409, 53-59. https://doi.org/10.1016/j.nimb.2017.06.020

Y. Kaplan, A. Cetin Can, A. Ulukoy (2019) A new medium for boriding of Ti6Al4V alloy for biomedical applications, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(2), 109-119. https://doi.org/10.1177/1464420716662801

R. A. García-León, J. Martínez-Trinidad, I. Campos-Silva (2021) Historical Review on the Boriding Process using Bibliometric Analysis, Transactions of the Indian Institute of Metals, 74, 541-557. https://doi.org/10.1007/s12666-020-02174-6

B. Mebarek, A. Benguelloula, A. Zanoun (2018) Effect of Boride Incubation Time During the Formation of Fe2B Phase, Materials Research, 21(1), 1-7. https://doi.org/10.1590/1980- 5373-MR-2017-0647

B. Mebarek, M. Keddam, M. Kulka (2021) Simulation of the incubation time for the formation of (FeB/Fe2B) bilayer on pure iron, Corrosion and Material Protection - Koroze a ochranamateriálu, 65, 49-56. https://doi.org/10.2478/kom-2021-0006

K. Holmberg, A. Matthews (2009) Coatings Tribology, Properties, Mechanisms, Techniques and Applications in Surface Engineering, Elsevier, Tribology and Interface Engineering Series No. 56. ISBN: 9780080931463

A. P. Krelling, F. Teixeira, C. E. Costa, E. A. dos Santos de Almeida, B. Zappelino, J. Cesar G. Milan (2019) Microabrasive wear behavior of borided steel abraded by SiO2 particles, Journal of Materials Research and Technology, 8(1), 766-776. https://doi.org/10.1016/j.jmrt.2018.06.004

M. J. Gaona-Martínez, R. Puente-Ornelas, E. A. Gallardo-Hernández, J. H. Ramírez-Ramírez, F. A. Pérez-González, R. Colás, N. F. Garza-Montes-de-Oca (2020) Oxidation behaviour of borided Incoloy 909, Surface Engineering, 36(8), 859-866. https://doi.org/10.1080/02670844.2019.1653597

Z. Salyi, G. Kaptay, D. Koncz-Horvath, L. Somlyai-Sipos, P. Z. Kovacs, A. Lukacs, M. Benke (2022) Boride Coatings on Steel Protecting it Against Corrosion by a Liquid Lead-Free Solder Alloy,Metallurgical and Materials TransactionsB, 53, 730-743. https://doi.org/10.1007/s11663-021-02412-2

İ. A. Safiye, A. İbrahim (2022) Tribological and adhesion properties of microwave-assisted borided AISI 316L steel, Materials Testing, 64(2), 249-259. https://doi.org/10.1515/mt-2021-2031

M. Keddam, M. Kulka (2018) Analysis of the growth kinetics of Fe2B layers by the Integral method, Journal of Mining and Metallurgy, 54(3), 361-367. https://doi.org/10.2298/JMMB180405026K

Y. El Guerri, B. Mebarek, M. Keddam (2022) Impact of the diffusion coefficient calculation on predicting Fe2B boride layer thickness, Corrosion and Material Protection - Koroze a ochranamateriálu, 66, 25-35. https://doi.org/10.2478/kom-2022-0005

B. Mebarek, M. Keddam (2020) Fuzzy logic approach for modelling the formation kinetics of Fe2B layer, International Journal of Computational Materials Science and Surface Engineering, 9(2), 147-156. https://doi.org/10.1504/IJCMSSE.2020.109563

Y. El Guerri, B. Mebarek (2024) Determining boride layer thicknesses formed on XC38 steel with artificial neural network, Materials Protection - ZaštitaMaterijala, 65(3), 534-543. https://doi.org/10.2478/kom-2022-0005

L. G. Yu, X. J. Chen, K. A. Khor, G. Sundararajan (2005) FeB/ Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics, Acta Materialia, 53(8), 2361-2368. https://doi.org/10.1016/j.actamat.2005.01.043

M. G. Krukovich, B. A. Prusakov, I. G. Sizov (2016) The Components and Phases of Systems ‘Boron-Iron’ and ‘Boron-Carbon-Iron’, book Plasticity of Boronized Layers, Springer, Cham, 13-21. https://doi.org/10.1007/978-3-319-40012-9_3

H. Okamoto (2004) B-Fe (boron-Iron), Journal of Phase Equilibria and Diffusion, 25, 297-298. https://doi.org/10.1007/s11669-004-0128-3

T.R. Goodman (1964) Application of Integral Methods to Transient Nonlinear Heat Transfer, Advances in Heat Transfer, 1, 51-122. https://doi.org/10.1016/S0065-2717(08)70097-2

M. Keddam, M. Elias-Espinosa, M. Ortiz-Domínguez, I. Simón Marmolejo, J. Zuno-Silva (2017) Pack-boriding of AISI P20 steel: Estimation of boron diffusion coefficients in the Fe2B layers and tribological behaviour, International Journal of Surface Science and Engineering, 11(6), 563-585. https://doi.org/10.1504/IJSURFSE.2017.088997

M. Keddam, M. Ortiz-Dominguez, M. Elias-Espinosa, A. Arenas-Flores, J. Zuno-Silva, D. Zamarripa-Zepeda, O. A. Gomez Vargas (2018) Kinetic Investigation and Wear Properties of Fe2B Layers on AISI 12L14 Steel, Metallurgical and Material Transaction A, 49, 1895-1907. https://doi.org/10.1007/s11661-018-4535-1

J. Zuno-Silva, M. Keddam, M. Ortiz-Domínguez, M. C. Elias-Espinosac, F. Cervantes-Sodi, J. Oseguera-Peña, L.D.F. De-Dios, O.A. Gomez-Vargas (2018) Kinetics of formation of Fe2B layers on AISI S1 steel, Materials Research, 21(5), 1-10. https://doi.org/10.1590/1980-5373-MR-2018-0173

U. Ascher, L. Petzold (1998) Computer Methods for Ordinary Differential Equations and Differential Algebraic Equations, SIAM, Philadelphia. ISBN: 9780898714128

G. K. Uyanık, N. Güler (2013) A Study on Multiple Linear Regression Analysis, Elsevier, Procedia - Social and Behavioral Sciences, 106, 234-240. https://doi.org/10.1016/j.sbspro.2013.12.027

P. Roback, J. Legler (2021) Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R, CRC Press, United States of America. https://doi.org/10.1201/9780429066665

J. W. Osborne, E. Waters (2002)Four assumptions of multiple regression that researchers should always test, Practical Assessment, Research and Evaluation, 8, 1-5. https://doi.org/10.7275/r222-hv23

K. M. Ramachandran, C. P. Tsokos (2020) Mathematical Statistics with Applications in R, Elsevier, Academic Press. https://doi.org/10.1016/C2018-0-02285-9

Y. El Guerri, B. Mebarek, M. Keddam (2024) Confrontation of linear versus nonlinear approach in Fe2B boride layer thickness predictions, Materials Protection - ZaštitaMaterijala, 65(1), 97-109. https://doi.org/10.62638/ZasMat1016

Downloads

Published

29-07-2025

Issue

Section

Articles